
Inverting a 2D Fourier Transform
Biophysics.

Prof. Joshua Deutsch

Rafael Dı́az
Ryan Hoffman

Joe Platzer

April 11,2013

All the members of the team discussed the interpretation of a Fourier Transform (FFT) and its
meaning. Ryan Hoffman and Joe Platzer identified the images obtained from the program; Rafael Dı́az
wrote the required code and work on the mathematical part of the results interpretation.

Inverting a FFT of a 2D Image

The code used for inverting the FFT’s is shown below. A minor modification from the suggested one was
implemented in order to process all the images automatically.

#You always will be importing a number of modules, or libraries initially

import numpy

from scipy import *

from pylab import *

import scipy

import os

import re

#In python, a function call always begins with "def".

def get_d(shp):

The argument to the function get_d in this case is a "tuple"

shp is the variable containing the shape of an array, that is

the dimensions (number of columns, and number of rows)

Suppose shp = (10,20), then below, you’d see below, that m=10, and n = 20

m = shp[0]

n = shp[1]

The next line creates an array "dsq" of dimensions shape, all initialized to 0:

dsq = zeros(shp)

Below is the most common way to loop. range(m) creates a list of numbers [0,1,2,...,n-1]

We have two for loops, meaning that we’ll be assigning values to every element dsq[i,j]

for i in range(m):

for j in range(n):

Here the R.H.S. calls another function called fold, defined below. "**" means "to the power of"

dsq[i,j] = fold(i,m)**2 + fold(j,n)**2

It hands us back the array dsq filled up with the right values.

return dsq

1

This is another function that is useful when dealing with fourier transforms. As

a function of x it goes up and then down again, like a triangle with a max at n/2

def fold(x,n):

if x < n/2:

return x

else:

return n-x

This finds the minimum value in an array of numbers

def mini(a):

return a.flatten()[a.argmin()]

This finds the maximum value in an array of numbers

def maxi(a):

return a.flatten()[a.argmax()]

num_images = 0

The next 3 lines iterate over all files that end in ".png"

With each one of these, we perform operations described below.

for rootdir, dirs, files in os.walk(’encoded_images_0/’):

for file in files:

if re.search(".png",file):

Read in the image.

image_read = imread(os.path.join(rootdir, file))

keep track of the number of images that we’re processing

num_images += 1

print "processing image ", num_images, " called ", file

read in an fft_image, call it fft_pic.png

fft_image = image_read

now subtract off the average value of the fft:

ave = average(fft_image)

fft_image -= ave

dsq_array = get_d(fft_image.shape)

now divide fft_image by dsq_array

fft_image /= dsq_array # /= ?

now we’ve just divided by zero so

fft_image[0,0] = 0.0

now take the inverse fourier transform (ifft2) and the real part of that (real)

image = real(ifft2(fft_image))

Now show the image:

colormap = cm.gist_gray

The following lines are needed to obtain an image with the right orientation

shp = shape(image)

m = shp[0]/2

n = shp[1]/2

misc.imsave("decoded images/inverse_fft"+str(num_images)+".png",image[m:0:-1,0:n])

2

The images obtained using the code above are shown in Fig. 1.

3

(a) The telomeric end of a piece of
linear DNA.

(b) Microtubule polymeriza-
tion/depolymerization.

(c) A mitochondria.

(d) X-ray diffraction pattern pro-
duced by the DNA double helix.

(e) Some antiparallel protein beta-
sheets.

(f) Picture of Watson and Crick with
their model DNA.

(g) A cell in metaphase of mitosis. (h) A protein alpha-helix. (i) A bacteriophage.

Figure 1: Images obtained inverting a 2D FFT

4

Interpretation of results

1. Inverse Fourier Transform of the Real Part of a FFT.

Let us assume that G(k) is the FFT of g(x), i.e.

G(k) =
1√
2π

∞∫
−∞

e−ikxg(x)dx.

Since eiα = cos(α) + i sin(α), the real part of the last equation is (assuming g(x) is real):

Re(G) =
1√
2π

∞∫
−∞

cos(kx)g(x)dx. (1)

Now, in general, the Inverse Fourier Transform of any function F (k) is

F−1{F (k)} =
1√
2π

∞∫
−∞

eikxF (k)dk.

Thus, plugging in Eq. (1) in the last expression (suppressing the integral limits for clarity) we get

F−1{Re(G(k))} =
1

2π

∫
eikx

′ {∫
cos(kx)g(x)dx

}
dk

=
1

2π

∫∫
eikx

′
(
eikx + e−ikx

2

)
g(x)dxdk

=
1

2

∫∫ (eik(x′+x) + eik(x
′−x)

2π

)
g(x)dxdk

(2)

But, by definition,

δ(x− x′) =
1

2π

∞∫
−∞

eik(x−x
′)dk.

Therefore, by reversing the order of integration in the last line of (2), the result is

F−1{Re(G(k))} =
1

2

∫
g(x) [δ(x+ x′) + δ(x′ − x)] dx

=
g(x′) + g(−x′)

2
.

(3)

What this show is that, by taking only the real part of a FFT and then inverting it, one will not
obtain the original function. Rather a superposition of it is obtained.

2. Fourier Transform of cos(ax) Analytically, the FFT of cos(ax) is a sum of two δ-functions, centered
at a and −a:

F (k) = F{cos(ax)} =
1√
2π

∫
e−ikx cos(ax)dx

=
1

2

1√
2π

∫ (
eix(k+a) + e−ix(k+a)

)
dx

=

√
π

2
[δ(a− k) + δ(a+ k)]

(4)

5

On the other hand, using the code provided in the course web page, the resultant plot is depicted
in Fig. 2. As can be seen in this figure, the two “δ peaks” expected do appear. However, the one
at −a is translated, just as happened in the examples during the lecture.

0 20 40 60 80 100 120 14010

0

10

20

30

40

50

60

70

Figure 2: FFT of cos 10x (blue line) and cos 25x (green line).

Appendix

In this section, we present various screen shots to show that all the members of the team were able to
install Python properly.

6

Figure 3: Joe Platzer’s screen shot.

(a) Screen shot of elect.py. (b) Screen shot ofquart-dend.py.

Figure 4: Ryan Hoffman’s screen shots

Figure 5: Rafael Dı́az’s screen shot.

7

