Inverting a 2D Fourier Transform Biophysics. Prof. Joshua Deutsch

Rafael Díaz
Ryan Hoffman
Joe Platzer

April 11,2013

All the members of the team discussed the interpretation of a Fourier Transform (FFT) and its meaning. Ryan Hoffman and Joe Platzer identified the images obtained from the program; Rafael Díaz wrote the required code and work on the mathematical part of the results interpretation.

Inverting a FFT of a 2D Image

The code used for inverting the FFT's is shown below. A minor modification from the suggested one was implemented in order to process all the images automatically.

```
#You always will be importing a number of modules, or libraries initially
import numpy
from scipy import *
from pylab import *
import scipy
import os
import re
```

\#In python, a function call always begins with "def".
def get_d(shp):
\# The argument to the function get_d in this case is a "tuple"
\# shp is the variable containing the shape of an array, that is
\# the dimensions (number of columns, and number of rows)
\# Suppose $\operatorname{shp}=(10,20)$, then below, you'd see below, that $\mathrm{m}=10$, and $\mathrm{n}=20$
$\mathrm{m}=\mathrm{shp}[0]$
$\mathrm{n}=\operatorname{shp}[1]$
\# The next line creates an array "dsq" of dimensions shape, all initialized to 0:
$\mathrm{dsq}=$ zeros(shp)
\# Below is the most common way to loop. range(m) creates a list of numbers $[0,1,2, \ldots, n-1]$
\# We have two for loops, meaning that we'll be assigning values to every element dsq[i,j]
for i in range(m):
for j in range (n):
\# Here the R.H.S. calls another function called fold, defined below. "**" means "to the power of"
dsq[i,j] $=\mathrm{fold}(\mathrm{i}, \mathrm{m}) * * 2+\mathrm{fold}(\mathrm{j}, \mathrm{n}) * * 2$
\# It hands us back the array dsq filled up with the right values.
return dsq

```
# This is another function that is useful when dealing with fourier transforms. As
# a function of }x\mathrm{ it goes up and then down again, like a triangle with a max at n/2
def fold(x,n):
    if x < n/2:
            return x
    else:
            return n-x
```

\# This finds the minimum value in an array of numbers
def mini(a):
return a.flatten() [a.argmin()]
\# This finds the maximum value in an array of numbers
def maxi(a):
return a.flatten() [a.argmax()]
num_images $=0$
\# The next 3 lines iterate over all files that end in ".png"
\# With each one of these, we perform operations described below.
for rootdir, dirs, files in os.walk('encoded_images_0/'):
for file in files:
if re.search(".png",file):
\# Read in the image.
image_read = imread(os.path.join(rootdir, file))
\# keep track of the number of images that we're processing
num_images += 1
print "processing image ", num_images, " called ", file
\# read in an fft_image, call it fft_pic.png
fft_image = image_read
\# now subtract off the average value of the fft:
ave = average(fft_image)
fft_image -= ave
dsq_array $=$ get_d(fft_image.shape)
\# now divide fft_image by dsq_array
fft_image /= dsq_array \# /= ?
\# now we've just divided by zero so
fft_image[0,0] = 0.0
\# now take the inverse fourier transform (ifft2) and the real part of that (real)
image $=$ real (ifft2(fft_image))
\# Now show the image:
colormap $=$ cm.gist_gray
\# The following lines are needed to obtain an image with the right orientation
shp = shape(image)
$\mathrm{m}=\operatorname{shp}[0] / 2$
$\mathrm{n}=\operatorname{shp}[1] / 2$
misc.imsave("decoded images/inverse_fft"+str(num_images)+".png",image[m:0:-1,0:n])

The images obtained using the code above are shown in Fig. 1.

(a) The telomeric end of a piece of linear DNA.

(d) X-ray diffraction pattern produced by the DNA double helix.

(g) A cell in metaphase of mitosis.

(b) Microtubule polymerization/depolymerization.

(e) Some antiparallel protein betasheets.

(h) A protein alpha-helix.

(c) A mitochondria.

(f) Picture of Watson and Crick with their model DNA.

(i) A bacteriophage.

Figure 1: Images obtained inverting a 2D FFT

Interpretation of results

1. Inverse Fourier Transform of the Real Part of a FFT.

Let us assume that $G(k)$ is the FFT of $g(x)$, i.e.

$$
G(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} g(x) \mathrm{d} x
$$

Since $e^{i \alpha}=\cos (\alpha)+i \sin (\alpha)$, the real part of the last equation is (assuming $g(x)$ is real):

$$
\begin{equation*}
\operatorname{Re}(G)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \cos (k x) g(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

Now, in general, the Inverse Fourier Transform of any function $F(k)$ is

$$
\mathcal{F}^{-1}\{F(k)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} F(k) \mathrm{d} k .
$$

Thus, plugging in Eq. (1) in the last expression (suppressing the integral limits for clarity) we get

$$
\begin{align*}
\mathcal{F}^{-1}\{\operatorname{Re}(G(k))\} & =\frac{1}{2 \pi} \int e^{i k x^{\prime}}\left\{\int \cos (k x) g(x) \mathrm{d} x\right\} \mathrm{d} k \\
& =\frac{1}{2 \pi} \iint e^{i k x^{\prime}}\left(\frac{e^{i k x}+e^{-i k x}}{2}\right) g(x) \mathrm{d} x \mathrm{~d} k \tag{2}\\
& =\frac{1}{2} \iint\left(\frac{e^{i k\left(x^{\prime}+x\right)}+e^{i k\left(x^{\prime}-x\right)}}{2 \pi}\right) g(x) \mathrm{d} x \mathrm{~d} k
\end{align*}
$$

But, by definition,

$$
\delta\left(x-x^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} \mathrm{d} k
$$

Therefore, by reversing the order of integration in the last line of (2), the result is

$$
\begin{align*}
\mathcal{F}^{-1}\{\operatorname{Re}(G(k))\} & =\frac{1}{2} \int g(x)\left[\delta\left(x+x^{\prime}\right)+\delta\left(x^{\prime}-x\right)\right] \mathrm{d} x \\
& =\frac{g\left(x^{\prime}\right)+g\left(-x^{\prime}\right)}{2} \tag{3}
\end{align*}
$$

What this show is that, by taking only the real part of a FFT and then inverting it, one will not obtain the original function. Rather a superposition of it is obtained.
2. Fourier Transform of $\cos (a x)$ Analytically, the FFT of $\cos (a x)$ is a sum of two δ-functions, centered at a and $-a$:

$$
\begin{align*}
F(k)=\mathcal{F}\{\cos (a x)\} & =\frac{1}{\sqrt{2 \pi}} \int e^{-i k x} \cos (a x) \mathrm{d} x \\
& =\frac{1}{2} \frac{1}{\sqrt{2 \pi}} \int\left(e^{i x(k+a)}+e^{-i x(k+a)}\right) \mathrm{d} x \tag{4}\\
& =\sqrt{\frac{\pi}{2}}[\delta(a-k)+\delta(a+k)]
\end{align*}
$$

On the other hand, using the code provided in the course web page, the resultant plot is depicted in Fig. 2. As can be seen in this figure, the two " δ peaks" expected do appear. However, the one at $-a$ is translated, just as happened in the examples during the lecture.

Figure 2: FFT of $\cos 10 x$ (blue line) and $\cos 25 x$ (green line).

Appendix

In this section, we present various screen shots to show that all the members of the team were able to install Python properly.

Figure 3: Joe Platzer's screen shot.

Figure 4: Ryan Hoffman's screen shots

Figure 5: Rafael Díaz's screen shot.

