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ABSTRACT
Maxim Gumin’s WaveFunctionCollapse (WFC) algorithm is an
example-driven image generation algorithm emerging from the
cra� practice of procedural content generation. In WFC, new im-
ages are generated in the style of given examples by ensuring every
local window of the output occurs somewhere in the input. Op-
erationally, WFC implements a non-backtracking, greedy search
method. �is paper examines WFC as an instance of constraint
solving methods. We trace WFC’s explosive in�uence on the tech-
nical artist community, explain its operation in terms of ideas from
the constraint solving literature, and probe its strengths by means
of a surrogate implementation using answer set programming.
ACM Reference format:
Anonymous Author(s). 2017. WaveFunctionCollapse is Constraint Solving.
In Proceedings of 8th Procedural Generation Workshop, International Con-
ference on the Foundations of Digital Games 2017, PCG, Aug 2017 (FDG17),
9 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Constraint solving is neither a traditional nor well-known ap-
proach to procedural content generation (PCG). Nevertheless, this
approach can be surprisingly e�ective for building controllable con-
tent generators. �is paper examines the WaveFunctionCollapse
(WFC) algorithm, an example-driven image generation algorithm
recently developed by game developer Maxim Gumin, and illumi-
nates it through the lens of constraint solving.

In 2016 and 2017, WaveFunctionCollapse a�racted the a�ention
of several indie and hobby game makers via social media.1 Anima-
tions of the algorithm demonstrated not just the primary output,
a large image generated in the style of a smaller artist-provided
source, but also a surprisingly human-like mode of incremental cre-
ation. Referring to one of the major components of the algorithm,
Gumin writes [12]: “I noticed that when humans draw something
they o�en follow the minimal entropy heuristic themselves. �at’s
why the algorithm is so enjoyable to watch.” �e animated visu-
alizations, with the results gradually resolving themselves out of
a fog of possibilities (Fig. 1), instantly showed that the algorithm
works di�erently than familiar constructive or artifact-at-a-time
generate and test methods.

1h�ps://twi�er.com/ExUtumno/status/781833475884277760
h�ps://twi�er.com/dwtw/status/810166761270243328
h�ps://twi�er.com/jplur /status/784591710777147392
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Figure 1: �e WaveFunctionCollapse generator in action.
�e unresolved information in the images on the le� is
shown as the average color value of their possible outputs.

�e approach used draws deeply from techniques known in
computer graphics for texture synthesis (we examine this literature
more in a later section). Where WaveFunctionCollapse departs from
texture synthesis is also a key place where it enables surprising
new applications in game design—it does not allow pixel colors to
be blended, preserving gameplay semantics demonstrated in the
source image. In this sense, it is similar to generative methods
based on Markov chains that, in applications like generative text
(e.g. Michael Walker’s King James Programming [27]), assemble
outputs from locally-consistent chains of unmodi�ed text. Both
traditional texture synthesis and Markov chain approaches are
primarily data-driven and thus accessible to non-programmers, a
feature that stands in contrast with expectations about systems that
operate on the basis of constraint solving.

In this paper, we make the following contributions:
• We trace signi�cant applications of WaveFunctionCollapse

to date.
• We provide a pseudocode explanation of the algorithm’s

major steps in the context of a worked example and the
terminology of constraint solving.

• We reformulate the image generation problem using the
technology of answer set programming to interrogate the
source of the algorithms strengths in relation to traditional
constraint solving techniques.

�is work aims to highlight the value of studying the cra� prac-
tice of PCG and to clarify the present and future role of constraint

https://twitter.com/ExUtumno/status/781833475884277760
https://twitter.com/dwtw/status/810166761270243328
https://twitter.com/jplur_/status/784591710777147392
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solving as one of the many generative methods we can draw on in
applied PCG systems.

2 BACKGROUND
In this section, we relate the WaveFunctionCollapse algorithm to
some of the earlier approaches to image generation and introduce
the vocabulary that will help us examine WFC as a constraint
solving algorithm.

2.1 Texture Synthesis
In computer graphics, texture synthesis is the problem of generat-
ing a large (and o�en seamlessly tiling) output image with texture
resembling that of a smaller input image [1]. In many texture syn-
thesis approaches (e.g. the work of Liang et al. [17]), the input
and output images are characterized in terms of the local pa�erns
they contain where these pa�erns are typically sub-images of just
a few pixels in width (e.g. 5-by-5 pixel windows). Although di�er-
ent algorithms achieve this goal in di�erent ways, many texture
synthesis algorithms intend to produce outputs such that every
local pa�ern in the output resembles a local pa�ern in the input. In
the visual se�ing of graphics, this resemblance need not be exact
pixel-for-pixel matching and is o�en judged based on a distance
metric (e.g. Euclidean distance of pixel color vectors) that judges
some colors to be closer than others. By contrast, exact matching
is the only sense of resemblance present in WaveFunctionCollapse
(towards important implications for game development discussed
later).

In Liang’s method, [17] the output image is grown incremen-
tally. Part-way through the generation process, a large region of
the output has already been generated, but more remains. A loca-
tion on the border of this region is selected, and the surrounding
already-chosen pixels (the context) are used to query an index of
pa�erns generated from the source image. A pa�ern with similar
local pixels is retrieved and used to paint in a few more pixels of the
output image, growing the region of completed pixels. WaveFunc-
tionCollapse also grows its output image incrementally, expanding
the known regions of the output by completing them with details
from local pa�erns of the input image. However, WFC needs to
perform many more bookkeeping operations in the not-yet-known
regions of the output in response to the need for exact pa�ern
matching.

While WFC is loosely inspired by quantum mechanics,2 Gumin
writes that he was inspired by the discrete synthesis approach of
Paul Merrell [18]. Although Merrell worked in computer graph-
ics and was also inspired by texture synthesis, he focused on the
problem of generating three-dimensional geometric models. In this
se�ing, we want to automatically generate a new (typically large)
3D model which is made up of components and arrangements taken
from a (typically small) 3D model provided by a human artist. Per
texture synthesis traditions, artifacts are characterized in terms of
their local pa�erns on a regular grid. Instead of blendable pixel
colors, however, discrete model synthesis aims to exactly reuse
geometric chunks.
2Very loosely, and mostly con�ned to how it uses the superposition of possible image
states. As Gumin explains, “�e coe�cients in these superpositions are real numbers,
not complex numbers, so it doesn’t do the actual quantum mechanics, but it was
inspired by QM.” [12]

In personal correspondence with us, Gumin described how he
was inspired by convolutional neural network style transfer, but
found it lacking for level generation. He experimented with several
approaches to model and texture generation, looking for a texture
synthesis algorithm with strong local similarity, where each N ×N
pa�ern in the output could be traced to a pa�ern in the input.
Gumin’s intent was to capture the rules for how the source image
was made.

His SynTex project [10] implemented several texture synthesis
methods, yielding a�ractive results for game texture images but
nonsensical outputs for non-texture images (such as of items like
swords) where pixel-grid analysis destroyed the visual semantics of
structured objects. In the ConvChain project [9], he experimented
with an approach based on Markov Chain Monte Carlo, a statistical
sampling approach that directly measures how likely an output
image is under the distribution of local pa�erns implied by the input
image. Statistical modeling is also present, if much less explicitly,
in Gumin’s later WaveFunctionCollapse algorithm.

2.2 Constraint solving algorithms
In the �eld of arti�cial intelligence (AI), largely disconnected from
computer graphics until recently, 3 constraint solving uses ideas
from knowledge representation and search to model continuous
and combinatorial search and optimization problems and solve
them with domain-independent algorithms [22, Chap. 6]

Constraint satisfaction problems (CSPs) are typically de�ned
in terms of decision variables and values. In the context of WFC-
style image generation, there is a variable associated with each
location in the output image. In a solution to the problem (called
an assignment), each variable takes on a value. Depending on the
context, values may come from continuous or discrete domains.
For the task addressed by WaveFunctionCollapse, the values are
associated with the discrete set of unique local pa�erns in the input
image. �e choice to assign a speci�c variable a speci�c value will
o�en in�uence the available choices that can be made for other
variables. Constraints relate the legal combination of values that a
set of variables might take on in a valid assignment. For the image
generation task, we want to model the idea that the pa�erns chosen
at each location in the output are compatible in terms of exact
matches for the pixels in which their associated local windows
overlap.

�e goal of an algorithm for solving CSPs (a solver) is to �nd
a total assignment (an assignment for every variable) such that
no constraints are violated. Although there are many di�erent
approaches to constraint solving, most operate by searching in the
space of partial assignments. �at is, they search the space of in-
complete solutions, not generating a single candidate solution until
that solution is known to be free of con�icts (constraint violations).
�e solver repeatedly selects an unassigned variable and then de-
cides on a value to assign from the variable’s domain. If the solver
encounters a partial assignment for which no subsequent variables
can be assigned without violating constraints, the solver typically
backtracks on a recent decision—backing out of a dead-end.
3Recent innovations in style transfer were sparked by a breakthrough in using deep
convolutional neural network classi�ers to mimic artistic styles [4] �is has lead to a
�ood of related research, along with the exploration of other applications of neural
networks to graphics.
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To the skeleton of backtracking search sketched above, advanced
constraint solving methods add improvements that a�empt to speed
up identi�cation of a legal total assignment. Some heuristics (ei-
ther domain-speci�c or domain-independent) aid the selection of
a promising variable to select next while others aid the selection
of a promising value to assign for that variable. �e addition of
heuristics typically alter the order in which the solver explores the
space without impacting completeness guarantees (i.e. that the
solver will eventually, in �nite time, return a solution if at least one
exists).

Complementary to heuristics, constraint propagation methods
do additional bookkeeping in order to prune away values from do-
mains that would lead to dead-ends later. Constraint propagation
ideally allows a solver to skip past fruitless search without impact-
ing the order in which the space is explored. AC3 is a well known
constraint propagation algorithm [22, Chap. 6]. Although AC3 and
other propagators can end up making assignments to variables as
part of their operation, they are not complete solvers by themselves.
Propagators are typically run a�er each choice by a solver in order
to simplify the remaining search problem.

For a game-focused audience, we refer the reader to the Game AI
Pro 2 book chapter “Rolling Your Own Finite-Domain Constraint
Solver” [2] for more details.

2.3 Constraint solving in PCG
Although there are a few examples of note, constraint solving is
mostly overlooked for the purposes of content generation. Tax-
onomies of PCG such as in the notable search-based PCG sur-
vey [26] do not account for approaches to content generation that
are neither directly constructive nor perform their search at the
level of completed candidate designs. �e concept of working with
partial designs is part of what makes the animations derived from
WaveFunctionCollapse executions so visually stunning—we aren’t
used to seeing our generators work this way.

Constraint based PCG methods are o�en associated with making
strong guarantees about outputs as well as having the cost of those
guarantees paid in unpredictability of total running time. Most
backtracking solvers yield good performance on their associated
search tasks for real world problems, but this outcome is hard to
characterize in terms of theory (where exponential worst case anal-
yses are uninformative). Horswill and Foged [14] describe a “fast”
method for populating a level design with content under strong
playability guarantees. �eir algorithm is based on backtracking
search with (AC3) constraint propagation. Although it makes only
modest demand on processor and memory resources, it is expected
to be used by programmers who are at least moderately literate in
search algorithm design.

In G. Smith’s Tanagra system, [24] a mixed-initiative platformer
level design tool, the Choco [21] solver is invoked to solve a speci�c
geometric layout subproblem in the overall level design process. In
this system, the user is in a designer role rather than a programmer
role. When the solver determines that the given CSP is impossible
to solve (we say the constraints are unsatis�able), it signals to the
larger tool that other decisions about the working level design,
such as what activity the player performs on each platform, need
to be relaxed (backtracked). Although Tanagra illustrates that CSPs

need not only be created by programmers (they can be assembled
programmatically from the data input into a graphical user inter-
face), backtracking still plays a major role. By contrast, Gumin’s
WaveFunctionCollapse does not backtrack.

2.4 ASP in PCG
Answer set programming (ASP) is a form of logic programming
targeted at modeling combinatorial search and optimization prob-
lems [5]. In ASP, low-level constraints are automatically derived
from the high-level rules in a problem formulation program, and
the implied CSP is solved using algorithms rooted in the SAT/SMT
literature [6].

A. M. Smith proposed the use of ASP in PCG [23] within the
paradigm of modeling design spaces. Rather than directly aiming
to code and algorithm for generating content, we should declara-
tively model the space of content we want to see and let a domain-
independent solver take care of the procedural aspects for us. Al-
though programmers using ASP need not have or use any knowl-
edge of search algorithm design, they are expected to be familiar
with the declarative programming paradigm and Prolog-like syntax.
�at background is not common amongst those, predominantly
technical artists, who were recently excited �nd WaveFunctionCol-
lapse.

Modern answer set solvers (such as Clingo [15]) allow for speci-
�cation of custom heuristics, externally checked constraints inter-
leaved with the search process, and hooks for scripting languages
in the service of integrating solvers with outside environments. We
will make use of Clingo later in this paper to implement an exper-
imental surrogate for WaveFunctionCollapse on top of advanced
constraint solving algorithms to be�er understand the features of
Gumin’s invention.

3 WFC IN THEWILD
Within a day of the September 30th 2016 release of WaveFunction-
Collapse to the public [8], other developers were actively experi-
menting with it in the wild.

Joseph Parker, an indie game developer, stated on Twi�er4 that
he had, “never been this excited about an algorithm!” Parker imme-
diately started work on a toolset for the Unity3D engine,5 releasing
it as a Unity asset before the end of October.6 �is toolset was, in
turn, quickly in active use by others.7

An active member of the experimental procedural generation
community, Parker had previously participated in ProcJam 2015.
ProcJam 2016 was the next month, and Parker’s entry was Proc
Skater 2016, developed along with Ryan Jones and Oscar Morante. [20]
Proc Skater 2016 was the �rst game to use WaveFunctionCollapse
for level generation 8, generating skate parks from the designer’s
sampled input. �e output skate parts were formed by arranging
discrete geometric chunks (akin to Merrell’s discrete model synthe-
sis) for which exact matching of local pa�erns ensured the smooth
traversability required during gameplay. Fig. 2 shows a screenshot
of the level generation.
4h�ps://twi�er.com/jplur /status/784591710777147392
5h�ps://twi�er.com/jplur /status/782271940694306816
6h�ps://twi�er.com/jplur /status/792440594845032448
7h�ps://twi�er.com/oh cripes/status/807565996957564928
8h�ps://twi�er.com/ExUtumno/status/812703329834962944

https://twitter.com/jplur_/status/784591710777147392
https://twitter.com/jplur_/status/782271940694306816
https://twitter.com/jplur_/status/792440594845032448
https://twitter.com/oh_cripes/status/807565996957564928
https://twitter.com/ExUtumno/status/812703329834962944
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Figure 2: Behind the scenes of level generation in the
�rst use of WaveFunctionCollapse in a game, Proc Skater
2016. [20] Copyright 2016 Joseph Parker.

Another game developer who has contributed to the populariza-
tion of WaveFunctionCollapse is Oskar Stålberg. A technical artist
who previously worked on Tom Clancy’s �e Division, [13] Stålberg
was among the �rst to start generalizing WaveFunctionCollapse,
extending it with other tile shapes,9 3D, meshes10 performance
optimizations,11 and adding backtracking.12 In May 2017, as part
of a talk about his approach to procedural generation, he released
a “small browser demo”13 to illustrate how the algorithm works
under the hood [25]

WaveFunctionCollapse has also been used in commercially-released
indie games, most notably Caves of�d [3]. Caves of�d is a rogue-
like developed by Freehold Games that is currently in early-access
release. Brian Bucklew, one of the developers, started experiment-
ing with using WaveFunctionCollapse for level generation.14 Two
of the levels are shown in Fig. 3). Caves of �d uses a multipass
WFC system, with templates applied successively to combine into
a larger variety of outcomes with more extreme variation.15 One
of the bene�ts of WFC that Caves of �d has demonstrated is that
the simple inputs mean that it is much easier for the entire team to
experiment with the generator.16

In addition to level design, WaveFunctionCollapse has been ap-
plied to other kinds of content. One of the most unexpected was
developed by Martin O’Leary, a glaciologist who also makes “weird
internet stu�” [19] including twi�er bots and procedurally gen-
erated travel guides. O’Leary created a poetry generator inspired
by WaveFunctionCollapse that enforced rhyme/meter constraints
to make sonnets from Alice in Wonderland,17 Pride and Prejudice

9h�ps://twi�er.com/OskSta/status/784847588893814785
10h�ps://twi�er.com/OskSta/status/787319655648100352
11h�ps://twi�er.com/OskSta/status/794993371261665280
12h�ps://twi�er.com/OskSta/status/793806535898136576
13h�ps://twi�er.com/OskSta/status/865200072685912064
14h�ps://twi�er.com/unormal/status/805987523596091392
15h�ps://forums.somethingawful.com/showthread.php?threadid=3563643&userid=
68893&perpage=40&pagenumber=23#post467126402
16h�ps://twi�er.com/ptychomancer/status/805964921443782656
17h�ps://twi�er.com/mewo2/status/789167437518217216

Figure 3: Two di�erent historical site levels in Caves of�d
generated via WaveFunctionCollapse. Copyright 2016 Free-
hold Games.

Figure 4: �e 4 × 4 pixel Red Maze sample, used as a source
image. Note that it tiles periodically, with the edges wrap-
ping around.

as a limerick,18 and “Moby Dick in a conveniently singable ballad
form.”19 In personal correspondence with us, O’Leary explained
that, “‘I treat syllables as the basic unit, so each ‘tile’ is a sequence
of syllables (tagged with the word/position it comes from).” �is is
entered into a 1-dimensional WFC sequence, together with “some
extra long-distance constraints induced by rhyme, meter, etc.”

In this se�ing, the texture synthesis view of WFC (operating
on images composed of pixels) is not nearly as informative as a
constraint solving view where the algorithm is seen to make choices
for variables from domains in a way that avoids violating stated
constraints.

4 THEWFC ALGORITHM
In this section, we examine the details of Gumin’s original for-
mulation of the WaveFunctionCollapse algorithm [11]. Although
Gumin’s project (including utilities for generating the example an-
imations that a�racted so many others to WFC) is not large—it
involves less than a thousand lines of C# code—the broad ideas of
18h�ps://twi�er.com/mewo2/status/789177702620114945
19h�ps://twi�er.com/mewo2/status/789187174683987968

https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/OskSta/status/787319655648100352
https://twitter.com/OskSta/status/794993371261665280
https://twitter.com/OskSta/status/793806535898136576
https://twitter.com/OskSta/status/865200072685912064
https://twitter.com/unormal/status/805987523596091392
https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://twitter.com/ptychomancer/status/805964921443782656
https://twitter.com/mewo2/status/789167437518217216
https://twitter.com/unormal/status/814569437181476864
https://twitter.com/mewo2/status/789177702620114945
https://twitter.com/mewo2/status/789187174683987968
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Figure 5: �e patterns derived from the Red Maze sample,
with a pattern size of N = 2, re�ection, and rotation. �eir
order here, from le� to right, top to bottom, is the same as
the index ordering used in the original C# implementation.
Note that only patterns that appear in the original sample
are present.

the algorithm are di�cult to interpret by reading the code directly.
In personal correspondence with several users of WFC, we learned
that many of them treated the code as a black box, using it directly
without a�empting to alter it. In response, we o�er a pseudocode
summary below.

�roughout the explanation of the algorithm, we’ll use one of
Gumin’s sample �les as a running example. �e Red Maze.png
image (Fig. 4) is a compact, three-color sample that can produce a
wide variety of outcomes, showing the features of the generator. At
the same time, the 16 source pixels and limited number of pa�erns
makes it easy to follow.

At the top level, WFC performs four key tasks: it extracts the
local pa�erns from the input image; it processes those pa�erns
into an index that speeds up constraint checking; it incrementally
generates the output image by growing a partial assignment; and it
�nally renders the total assignment back into an image in the same
format as the input.

defn Run():
PatternsFromSample()
BuildPropagator()
Loop until finished:

Observe()
Propagate()

OutputObservations()

A pa�ern here is a particular, unique con�guration of input
tiles. In the simple tiled version of the algorithm, the pa�erns are
speci�ed as explicit tile constraint relationships. In the overlapping
tile version, the constraints are inferred from the source image,
constructing a set of the unique N × N pa�erns from subimages
(Fig. 5). Symmetry and re�ection can optionally be taken into
account.

As can be seen in Fig. 5, when N = 2, the maze sample contains
twelve unique pa�erns. Four with a single black pixel, four with

Figure 6: A slice of the index datastructure for the �rst pat-
tern in Red Maze, showing which of the other patterns can
overlap with it. Note that, of course, the only pattern that
can overlap with it at zero o�set is itself. �e index datas-
tructure also stores similar information for the other pat-
terns.

two black and two white, and four around the red pixel. �e red
and white pixels are never next to each other in the source image,
so there is no pa�ern with that combination. Note that the sampled
image is periodically tiling. �is is optional, and only relevant for
cataloging the pa�erns. But makes it much easier to specify some
classes of input.

From the set of pa�erns, BuildPropagator() creates an index
datastructure that describes the ways that the pa�erns can be placed
near one another. For the overlap version, the index contains the
pre-calculated answers to whether the union between two pa�erns
match when one placed near the other with a particular x,y o�set.
(When N = 3 there are (2(N − 1) + 1)2 = 36 o�sets to consider.)
For the tiled version, this index can be created directly from the
designer-speci�ed tile relationships. In either case, this creates a
sparse relation between the pa�erns (sparse in the sense that most
pa�erns cannot occur with most o�sets to most other pa�erns).
Although Gumin’s code refers to this index as propagator in C#, we
here call it an index to avoid confusion with (constraint propagation)
propagators like AC3 (which WFC implicitly implements).

During the core incremental generation process, decision vari-
ables (grid locations) are repeatedly selected and then assigned. In
constraint solving, in addition to the current partial assignment,
solvers typically keep track of remaining domains for unassigned
variables. In Gumin’s C# code, this is stored in a table called wave
in loose reference to a quantum wave function. �e entries of the
table, which Gumin calls the coe�cients, are Boolean values that
record whether or not the algorithm might yet still assign a given
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pa�ern to a given location. All coe�cients in the wave are initial-
ized to a true value, which is equivalent to saying each decision
variable has an unreduced initial domain. Assignment and propaga-
tion both serve to pare down the domains of variables. Accordingly,
coe�cients only go from true to false during the execution of WFC.
Gumin’s algorithm does not implement local backtracking and
instead globally restarts in the rare case a con�ict is reached.

defn Observe(coefficient_matrix):
FindLowestEntropy()
If there is a contradiction, throw an error and quit
If all cells are at entropy 0, processing is complete:

Return CollapsedObservations()
Else:

Choose a pattern by a random sample, weighted by the
pattern frequency in the source data

Set the boolean array in this cell to false, except
for the chosen pattern

�e purpose of Observe() is to identify the location on the grid
with the lowest entropy nonzero. Entropy here corresponds to the
interpretation of the wave as implying a probability distribution
over the pa�erns to be found at each grid location. �e cell with
lowest entropy is the variable with the tightest or smallest domain
a�er propagation. �e heuristic of selecting the most constrained
variable or equivalently the variable with minimum remaining val-
ues (MRV) is well known in constraint solving [22, Chap. 6].

defn FindLowestEntropy(coefficient_matrix):
Return the cell that has the lowest greater-than-zero

entropy, defined as:
A cell with one valid pattern has 0 entropy
A cell with no valid patterns is a contradiction
Else: the entropy is based on the sum of the frequency

that the patterns appear in the source data, plus
Use some random noise to break ties and

near-ties.

Since there is more than one valid pa�ern for that location—or
it would already have been set to zero entropy in the previous
loop—one of those pa�erns needs to be chosen. One of the pa�erns
is chosen with a random sample, weighted by the frequency that
pa�ern appears in the input image. �is implements Gumin’s
secondary goal for local similarity: that pa�erns appear with a
similar distribution in the output as are found in the input [12].

Once a location has been observed (a variable has been assigned),
it is �agged as a location in the wave to be updated (as a place to
start updating variable domains via constraint propagation). Like
AC3, WFCs propagation procedure implements arc consistency—it
ensures that a value only appears in a domain of a variable if there
exists a valid value in the domain of related variables such that
constraints over those variables could be satis�ed. Updating the
domain of one variable implies the need to potentially update all
of the adjacent variables. As such, propagation proceeds via an
algorithm recognizable from a graphics perspective as a �ood �ll.

Figure 7: �e result of the �rst observation and propagation
step with the Red Maze sample. Since all of the locations
have equal entropy, the start was chosen at random. �e se-
lected pattern is the the �rst one, with a single black pixel
in the lower right corner. Note that the propagation has al-
ready resolved two additional white pixels, since every re-
maining pattern that can cover those locations has a white
pixel in that location.

defn Propagate(coefficient_matrix):
Loop until no more cells are left to be update:

For each neighboring cell:
For each pattern that is still potentially valid:

Compare this location in the pattern with the
cell's values

If this point in the pattern no longer
matches:

Set the array in the wave to false for this
pattern

Flag this cell as needing to be updated in
the next iteration

Each observation �nalizes the result of one location, and reduces
the entropy of the surrounding region (Fig. 8).

Once there is no more entropy in the system (all variables have a
singleton domain), we can output the �nal generated image (Fig. 9).
Additionally, we can take advantage of the side-e�ect of each cell
having an array of potential states and output a partially-�nished
image a�er each cycle of observation and propagation. �is is what
allowed the enticing visualizations noted in Fig. 8.

defn OutputObservations(coefficient_matrix):
For each cell:

Set observed value to the average of the color value
of this cell in the pattern for the remaining
valid patterns

Return the observed values as an output image

Taken together, we can see WaveFunctionCollapse as a con-
straint solving algorithm. Indeed, Gumin occasionally describes his
algorithm this way.20 It uses the minimum remaining values (MRV)
heuristic to select a variable to decide next. For decisions, it uses
20h�ps://twi�er.com/ExUtumno/status/793601984800624640
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Figure 8: Consecutive updates with the RedMaze dataset. Partially resolved cells are rendered as the average of their potential
outputs. Note how the propagation spreads to more cells in some steps, as the falling entropy allows multiple cells to be
resolved in the same step.

Figure 9: Two of the possible outcomes of generation using
the Red Maze sample.

the heuristic of choosing pa�erns according to their distribution
in the original image. An alternative to this heuristic would be to
use the well known least constraining value (LCV) selection heuris-
tic [22]. However, it is di�cult to predict the implications of this
heuristic choice for the purposes of content generation. �e topic
of sampling from combinatorial spaces with statistical uniformity
guarantees is surprisingly subtle [7].

5 REFORMULATINGWFC IN ASP
In this section, we use answer set programming (ASP) to implement
a surrogate for WaveFunctionCollapse. It is not a reimplementation
of WFC per se (for example, we do not a�empt to capture Gumin’s
entropy heuristic) but instead an a�empt to capture the problem
WFC solves in order to support asking questions about how WFC
might have been implemented di�erently.

Our surrogate reuses Gumin’s original input data examples and
input processing algorithms. Just before Gumin’s observe-and-
propagate cycle begins, we extract the index of legal pa�ern adja-
cencies (what Gumin calls the propagator) as well as the topology
of the grid that the algorithm is about to �ll.

Our formulation of the image generation problem in ASP in-
volves just two rules:

1 { assign(X,Y,P):pattern(P) } 1 :- cell(X,Y).

:- adj(X1,Y1,X2,Y2,DX,DY),
assign(X1,Y1,P1),
not 1 { assign(X2,Y2,P2):legal(DX,DY,P1,P2) }.

�e �rst rule states that every cell should be nondeterministically
assigned exactly one pa�ern. �e next rule is an integrity constraint
(which disallows certain solutions). It states that a solution should
be rejected if there is an adjacency between two cells of a certain
spatial o�set and the �rst cell is assigned one pa�ern and the second

cell is not assigned one of the pa�erns marked as legal according
to the index.

Combinging these two rules with a set of instance-speci�c facts
automatically derived from the snapshot mentioned above, we have
a logic program that can be solved with Clingo (we use Clingo
5.2.021).

When Clingo runs, two major tasks occur. First, the logic pro-
gram is grounded: symbols from the problem instance are substi-
tuted for all logic variables in the problem formulation. �is yields a
low-level constraint problem. �e time taken during grounding for
this problem formulation is proportional to the number of grid cells
multiplied by the number of legal pairings of pa�erns mentioned
in the index. Rather than checking all possible o�sets between
pa�erns, we only consider those in the four cardinal directions
on the grid (such that |DX | + |DY | = 1) because this constraint
subsumes the longer-range constraints. It bears noting that this
formulation does not pay the cost of all possible combinations of
local pixel values nor even all possible pairs of pa�erns present in
the input image. Like Gumin’s WFC, we take care to only do work
proportional to the number of sparse pairings of pa�erns.

A�er grounding, the generated constraint problem is solved to
�nd one or more satisfying assignments. By adjusting parameters of
the solver, we can cause Clingo to imitate various traditional search
algorithms. In the case where a solution can be found without
backtracking, solving takes time proportional to a modest poly-
nomial in the number of decision variables and constraints in the
CSP (where the details depend on the precise datastructure design
choices used in constraint propagation). When backtracking does
occur, the time taken is di�cult to characterize beyond that it is
related to the number of dead-ends (con�icts) encountered during
search. In the discussion below, we focus on the con�ict counts
rather than wall-clock times to factor out the performance of the
speci�c machine used for testing.22

To focus our experiments, we selected three of Gumin’s scenarios,
illustrated in Fig. 10: Flowers, Platformer, and Skyline (each
with N = 3).

5.1 Understanding Heuristics
In our �rst experiment, we aim to understand the importance of
Gumin’s entropy heuristic. We do this �rst asking Clingo to run
with all of the built-in heuristics disabled (passing the “--heu=none”
command line �ag). �is has the e�ect of causing Clingo to select
21h�ps://github.com/potassco/clingo/releases/tag/v5.2.0
22For reference, all non-timeout solving times were under two seconds using single
threaded search on a Early 2011 MacBookPro with a 2.2 GHz Intel Core i7 processor
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Figure 10: �ree input images on the le�, paired with their
example outcomes on the right.

grid location in some default ordering (namely the reading-order
traversal of the grid we used when preparing the problem instance
facts) and to choose pa�erns for those cells by taking the �rst
not-eliminated pa�ern from the domain.

Surprisingly, Clingo encounters zero con�icts during search for
the selected scenarios. �is result still holds if we tell Clingo to make
random choices for each selected location (something needed to
achieve varied outputs for gameplay purposes). �is suggests that
the strength of WFC comes from constraint propagation (removing
bad choices from variable domains before they are considered for
assignment) rather than the entropy heuristic. Both the entropy
heuristic and the e�ect of Clingo’s disabled heuristics have similar
behavior: the next cell selected to be assigned is o�en next to cells
that have already been assigned.

Clingo comes with a domain-agnostic heuristic known as VSIDS
(Variable State Independent Decaying Sum [16]), a dynamic heuris-
tic that learns how to make good choices at run-time by observing
where past choices failed. If we give VSIDS a chance to solve the im-
age generation problem, we �nd it does nearly as well as above: just
a few con�icts are encountered. Again, this suggests the importance
of constraint propagation over heuristics.

Interestingly, a baseline heuristic that decides which cell to assign
next randomly represents a pathological choice for this search task.
�is process o�en selects cells that are not near any other assigned
cell, inviting the opportunity for many choices that need to be
backtracked later. Given a minute to search, the solver always
times out (a�er many thousands of con�icts) when making random
selections for which cell to assign next.

5.2 Understanding Backtracking
�e results above would suggest that (when using non-pathological
heuristics) backtracking is not important. From this, it makes sense

that Gumin was able to achieve reasonable results by simply glob-
ally restarting in the greedy search if a con�ict is encountered.

By adding some reasonable global constraints to our ASP for-
mulation, we can probe how bri�le this result is. Continuing with
the spirit of the image generation task, we consider adding the
following integrity constraint to our formulation above:

:- pattern(P), not 1 { assign(X,Y,P):cell(X,Y) }.

�is constraint says to reject a possible solution if there is some
pa�ern (from the input image) that isn’t used in at least one assign-
ment for the output image.

Experimentally, we found that while adding this constraint did
not signi�cantly impact the number of con�icts encountered for
the Flowers and Platformer scenarios, it leads to hundreds of con-
�icts for the Skyline scenarios. If the the Clingo is instructed to
globally restart a�er each con�ict, it cannot �nd a solution within
the one-minute timeout window. However, if local backtracking
is allowed (the default behavior of Clingo), the constraint can be
quickly resolved by adjusting local choices.

In deeper game design applications of WaveFunctionCollapse
that a�ribute gameplay semantics to what are just pixel colors
in the image generation task, we expect the demand for global
constraints like this to grow. For example, consider an application
that a�empts to use WFC to generate an explorable environment.23

It seems desirable to be able to ask the search algorithm to enforce
global reachability constraints: every location which the player
might occupy should have a feasible path from the initial location
in the environment. A designer might specify this by identifying
a certain pixel color in the input image and �agging that color as
needing to form a single connected graph (a global constraint). A
balance of local backtracking and global restarts [28] will be needed
in the search algorithm to e�ciently generate designs satisfying
this constraint.

6 CONCLUSION
We have shown that WaveFunctionCollapse is a signi�cant ap-
plication of constraint solving for PCG with multiple in-the-wild
uses. Because WFC works with abstract chunks of content rather
than literal, blendable color values, it has many exciting applica-
tions such as poetry and constrained level generation. �rough
experiments with the ASP surrogate implementation, we show that
WFC’s choice of heuristic and decision to only apply global restarts
of search are reasonable choices for the original discrete image
generation task, but they are not critical going forward. Indeed,
local backtracking is being added to WFC by others such as Oskar
Stålberg who are reconsidering some of the Gumin’s original algo-
rithm and datastructure design choices. We assert that search in
the space of partial assignments and constraint propagation are the
primary strengths of WFC.

As a data-driven content generator with performance a�rac-
tive to many practitioners, WaveFunctionCollapse serves to upend
many prior expectations about the properties of constraint solv-
ing methods in PCG. As we can see from the enthusiastic uptake

23such as the roguelike dungeons in Caves of �d or the 3D environments in Oskar
Stålberg’s experiments: h�ps://twi�er.com/OskSta/status/797119718477991936
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of the algorithm by artists and designers, the data-driven content
generation is more accessible. Even though many users treat the
algorithm as a black box, they are able to e�ectively use it to create
interesting content.
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