Lecture 22-11/26-Second derivatives.

Given $f:[a, b] \rightarrow \mathbb{R}$ of class C^{1} on (a, b), we have seen that f^{\prime} exists and is continuous on (a, b). If f^{\prime} is in turn differentiable at $x_{0} \in(a, b)$ (in the sense that $\lim _{h \rightarrow 0}\left(f^{\prime}\left(x_{0}+h\right)-f^{\prime}\left(x_{0}\right)\right) / h$) exists, we say that f is twice differentiable at x_{0} and denote $f^{\prime \prime}\left(x_{0}\right)=\left(f^{\prime}\right)^{\prime}\left(x_{0}\right)$ (also called $\frac{d^{2} f}{d x^{2}}\left(x_{0}\right)$, or second-order derivative of f at x_{0}). If f is twice differentiable at every point of (a, b) and $f^{\prime \prime}(x)$ is continuous on (a, b), we say that f is twice continuously differentiable on (a, b) (or, of class C^{2} on $\left.(a, b)\right)$.

The second derivative $f^{\prime \prime}$ is useful for: (i) finding local minima or maxima; (ii) determining the concavity of the graph of f.

Theorem 85 (Local properties of $f^{\prime \prime}$). Suppose f is differentiable on a neighbordhood of x_{0}, and suppose $f^{\prime \prime}\left(x_{0}\right)$ exists. Define $g(x):=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ (the best linear approximation to f near x_{0}).
(a) Suppose $f^{\prime}\left(x_{0}\right)=0$. If $f^{\prime \prime}\left(x_{0}\right)>0$ (resp. <0), then x_{0} is a strict local minimum (resp. maximum).
(b) If x_{0} is a local minimum (resp. maximum), then $f^{\prime \prime}\left(x_{0}\right) \geq 0$ (resp. ≤ 0).
(c) If $f^{\prime \prime}\left(x_{0}\right)>0$ (resp. <0), there exists a neighborhood of x_{0} where for all $x, f(x) \geq g(x)$ (resp. $\leq g(x)$).
(d) If $f(x) \geq g(x)$ (resp. $\leq g(x)$) for all x in a neighborhood of x_{0}, then $f^{\prime \prime}\left(x_{0}\right) \geq 0$ (resp. ≤ 0).

Proof. Proof of (a). If $f^{\prime \prime}\left(x_{0}\right)>0$, then for x close enough to x_{0}, we write

$$
f^{\prime}(x)=f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+o\left(x-x_{0}\right),
$$

so since $f^{\prime \prime}\left(x_{0}\right)>0$, there exists $\delta>0$ such that $f^{\prime}(x)>0$ for $x \in\left(x_{0}, x_{0}+\delta\right)$ and $f^{\prime}(x)<0$ for $x \in\left(x_{0}-\delta, x_{0}\right)$. In particular, f is strictly decreasing on the left of x_{0} and strictly increasing on the right of x_{0}, thus f has a local minimum at x_{0}. The case $f^{\prime \prime}\left(x_{0}\right)$ is similar.

Proof of (b). By contradition, if x_{0} is local minimum and $f^{\prime \prime}\left(x_{0}\right)<0$, then by (a), x_{0} is also a strict local maximum, which is impossible.

Proof of (c). Apply part (a) to the function $f(x)-g(x)$.
Proof of (d). Apply part (b) to the function $f(x)-g(x)$.

Example 50. 1. In (b), it is not necessary to have $f^{\prime \prime}\left(x_{0}\right)>0$ at a strict local minimum: the function $f(x)=x^{4}$ has a strict local minimum at $x_{0}=0$, yet $f^{\prime \prime}(0)=0$.
2. Moreover, when $f^{\prime \prime}\left(x_{0}\right)=0$, we cannot tell a priori if the graph is above or below the tangent line near x_{0}, as this could be neither case, see for instance $f(x)=x^{3}$ at $x=0$.

Convexity/concavity. Another way to look at the second derivative is when describing the position of a graph with respect to its local chords (lines joining two points on the curve).

Figure 13: Local considerations when $f^{\prime \prime}\left(x_{0}\right) \neq 0$.

Figure 14: Local considerations when $f^{\prime \prime}\left(x_{0}\right)=0$. Until we look at higher-order derivatives, no conclusion can be made regarding the relative position of f with respect to its tangent line near x_{0}. Here, all three functions satisfy $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$ so the tangent line at $x=0$ is $y=0$ but the relative positions can be anything near $x=0$.

Theorem 86. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is of class C^{2} on (a, b). Let $\left(x_{1}, x_{2}\right) \subset(a, b)$ and define ${ }^{17}$ $g(x):=f\left(x_{1}\right)+\left(x-x_{1}\right) \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$.
(i) If $f^{\prime \prime}(x)>0$ for every $x \in\left(x_{1}, x_{2}\right)$, then $f(x)<g(x)$ for every $x \in\left(x_{1}, x_{2}\right)$.
(ii) If $f^{\prime \prime}(x)<0$ for every $x \in\left(x_{1}, x_{2}\right)$, then $f(x)>g(x)$ for every $x \in\left(x_{1}, x_{2}\right)$.

Proof. We only prove (i), as (ii) is similar. Set $h=f-g$. Note that $h\left(x_{1}\right)=h\left(x_{2}\right)=0$ and $h^{\prime \prime}(x)=f^{\prime \prime}(x)>0$ for every $x \in\left(x_{1}, x_{2}\right)$. Since h is continuous on $\left[x_{1}, x_{2}\right]$ so achieves its maximum there. If there is $x \in\left(x_{1}, x_{2}\right)$ such that $h(x) \geq 0$, then h has a local maximum x_{0} inside $\left(x_{1}, x_{2}\right)$, but from the previous theorem, $h^{\prime \prime}\left(x_{0}\right) \leq 0$, which contradicts $h^{\prime \prime}>0$.

The past two theorems tell us that if $f^{\prime \prime}(x)>0$ throughout an interval, then the graph of f lies above its tangents and below its chords. More generally, we call a function $f:[a, b] \rightarrow \mathbb{R}$ convex on $[a, b]$ if for every $x_{1}<x_{2}$ in $[a, b]$, and $t \in(0,1)$,

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) .
$$

Similarly, f is concave on $[a, b]$ if for every $x_{1}<x_{2}$ in $[a, b]$, and $t \in(0,1)$,

$$
\begin{equation*}
f\left(t x_{1}+(1-t) x_{2}\right) \geq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) . \tag{20}
\end{equation*}
$$

One may define strictly convex and strictly concave by making the inequalities strict in the last two equations above.

Noticing that in the last two right-hand sides,

$$
t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)=g\left(t x_{1}+(1-t) x_{2}\right),
$$

where $g(x)=f\left(x_{1}\right)+\left(x-x_{1}\right) \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$, Theorem 86 is equivalent to saying that
(i) If $f^{\prime \prime}(x)>0$ for every $x \in[a, b]$, then f is strictly convex on $[a, b]$.
(ii) If $f^{\prime \prime}(x)<0$ for every $x \in[a, b]$, then f is strictly concave on $[a, b]$.

Example 51. 1. The function $f(x)=x^{2}$ is strictly convex on \mathbb{R} since $f^{\prime \prime}(x)=2$ for all x.
2. The function $f(x)=\exp (x)$ is strictly convex on \mathbb{R} since $\exp ^{\prime \prime}(x)=\exp (x)>0$ for all x.

Graphically, a function f is convex on $[a, b]$ if its epigraph epi $(f)=\{(x, y): x \in[a, b], y \geq f(x)\}$ is a convex domain of \mathbb{R}^{2} (in the sense that, if $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ belong to epi (f), then the segment $P_{1} P_{2}$ belongs entirely to epi (f)).

[^0]
Exercises for Lecture 22:

1. Where are the following functions convex/concave?
(a) $f(x)=\left(x^{2}+1\right) \exp (x), x \in \mathbb{R}$.
(b) $f(x)=\sqrt{x}, x \in(0, \infty)$.
2. Suppose that $f:(a, b) \rightarrow(c, d)$ is C^{2} and invertible (in particular, $f^{\prime}(x) \neq 0$ for every $x \in(a, b))$.
(a) Express $\left(f^{-1}\right)^{\prime \prime}(y)$ solely in terms of $f^{\prime}\left(f^{-1}(y)\right)$ and $f^{\prime \prime}\left(f^{-1}(y)\right)$.
(b) If f is strictly convex on (a, b), is it always true that f^{-1} is strictly concave on (c, d) ? Prove or disprove.
3. (a) Prove that $\ln (x)$ is increasing and concave on $(0, \infty)$.
(b) Prove by induction on n using (a) that for any positive numbers $x_{1}, \ldots x_{n}$,

$$
\sqrt[n]{x_{1} \cdots x_{n}} \leq \frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
$$

[Hint: this is equivalent to showing that $\frac{1}{n}\left(\ln \left(x_{1}\right)+\cdots+\ln \left(x_{n}\right)\right) \leq \ln \left(\frac{1}{n}\left(x_{1}+\ldots x_{n}\right)\right)$. Think about how to inductively use (20)]

[^0]: ${ }^{17} g$ is the unique affine function passing through $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$.

