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Lecture 22 - 11/26 - Second derivatives.

Given f : [a,b] — R of class C! on (a,b), we have seen that f’ exists and is continuous on (a,b). If
f! is in turn differentiable at x¢ € (a,b) (in the sense that limy_o(f'(xo + h) — f'(x0))/h) exists,
we say that f is twice differentiable at xg and denote f”(xg) = (') (z0) (also called %(mo), or
second-order derivative of f at zg). If f is twice differentiable at every point of (a,b) and f”(z) is

continuous on (a,b), we say that f is twice continuously differentiable on (a,b) (or, of class
C? on (a,b)).
The second derivative f” is useful for: (i) finding local minima or maxima; (ii) determining the

concavity of the graph of f.

Theorem 85 (Local properties of f”). Suppose f is differentiable on a neighbordhood of x¢, and
suppose f"(xq) exists. Define g(x) := f(xo) + f'(xo)(x — z0) (the best linear approximation to f
near ).

(a) Suppose f'(xo) = 0. If f"(x0) > 0 (resp. < 0), then xg is a strict local minimum (resp.
mazximum,).

(b) If xo is a local minimum (resp. mazimum), then f"(xg) >0 (resp. <0).

(c) If f"(x9) > 0 (resp. < 0), there exists a neighborhood of xo where for all x, f(x) > g(x)
(resp. < g(x)).

(d) If f(z) > g(x) (resp. < g(x)) for all x in a neighborhood of xg, then f"(xg) > 0 (resp.
<0).

Proof. Proof of (a). If f”(xg) > 0, then for x close enough to x, we write

f(x) = f"(zo)(x — x0) + o(x — x0),

so since f"(zp) > 0, there exists § > 0 such that f/'(x) > 0 for x € (xg,z0 + J) and f'(x) < 0 for
x € (zg — 0,x0). In particular, f is strictly decreasing on the left of zp and strictly increasing on
the right of g, thus f has a local minimum at zg. The case f”(x() is similar.

Proof of (b). By contradition, if x¢ is local minimum and f”(z) < 0, then by (a), x¢ is also a
strict local maximum, which is impossible.

Proof of (c). Apply part (a) to the function f(z) — g(x).
Proof of (d). Apply part (b) to the function f(z) — g(x). O

Example 50. 1. In (b), it is not necessary to have f"(xg) > 0 at a strict local minimum: the
function f(z) = x* has a strict local minimum at xo = 0, yet f"(0) = 0.

2. Moreover, when f"(xo) = 0, we cannot tell a priori if the graph is above or below the tangent
line near g, as this could be neither case, see for instance f(x) = 2% at z = 0.

Convexity /concavity. Another way to look at the second derivative is when describing the
position of a graph with respect to its local chords (lines joining two points on the curve).
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Figure 13: Local considerations when f”(zg) # 0.
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Figure 14: Local considerations when f”(xg) = 0. Until we look at higher-order derivatives, no
conclusion can be made regarding the relative position of f with respect to its tangent line near
xo. Here, all three functions satisfy f(0) = f/(0) = f”(0) = 0 so the tangent line at z =0is y =0
but the relative positions can be anything near x = 0.
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Theorem 86. Suppose f : [a,b] — R is of class C? on (a,b). Let (x1,22) C (a,b) and define'”
g(z) == f(z1) + (z — :E1)7f(xj3:£511).

(i) If f"(x) > 0 for every x € (x1,x2), then f(x) < g(x) for every x € (x1,x2).

(i2) If f"(x) < 0 for every x € (x1,22), then f(x) > g(x) for every x € (x1,x2).
Proof. We only prove (i), as (i7) is similar. Set h = f — g. Note that h(x;) = h(z2) = 0 and
h"(z) = f"(x) > 0 for every x € (x1,x2). Since h is continuous on [z1, x2] so achieves its maximum

there. If there is # € (z1,22) such that h(xz) > 0, then h has a local maximum xzg inside (x1, z2),
but from the previous theorem, h”(z¢) < 0, which contradicts A" > 0. O

The past two theorems tell us that if f”(z) > 0 throughout an interval, then the graph of f lies
above its tangents and below its chords. More generally, we call a function f : [a,b] — R convex
on [a,b] if for every z1 < x2 in [a,b], and ¢ € (0, 1),

fltey + (1= t)x2) < tf(r) + (1= 1) f(x2).
Similarly, f is concave on [a, b] if for every x; < x9 in [a,b], and ¢ € (0,1),

flzr+ (L= t)z) = tf(21) + (1 — 1) f(22). (20)

One may define strictly convex and strictly concave by making the inequalities strict in the
last two equations above.

Noticing that in the last two right-hand sides,
tf(@1) + (1 =) f(22) = g(tzy + (1 — t)z2),

where g(z) = f(z1) + (z — xl)%, Theorem 86 is equivalent to saying that

(i) If f”(x) > 0 for every z € [a, b], then f is strictly convex on [a, b].
(ii) If f”(x) < 0 for every z € [a,b], then f is strictly concave on [a,b].

Example 51. 1. The function f(z) = 22 is strictly convex on R since f"(x) =2 for all x.

2. The function f(x) = exp(x) is strictly convex on R since exp”(z) = exp(z) > 0 for all x.

Graphically, a function f is convex on [a, 0] if its epigraph epi(f) = {(z,y) : = € [a,b],y > f(x)}
is a convex domain of R? (in the sense that, if Pi = (x1,y1) and Py = (22,%2) belong to epi(f),
then the segment P; P» belongs entirely to epi(f)).

7g is the unique affine function passing through (z1, f(x1)) and (x2, f(z2)).
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Exercises for Lecture 22:

1. Where are the following functions convex/concave ?
(a) f(z) = (22 +1)exp(z), x € R.
(b) f(z) = /&, z € (0,00),

2. Suppose that f : (a,b) — (c,d) is C? and invertible (in particular, f'(x) # 0 for every
x € (a,b)).

(a) Express (f~1)"(y) solely in terms of f/(f~'(y)) and f”(f~'(y)).
(b) If f is strictly convex on (a,b), is it always true that f~! is strictly concave on (c,d) ?

Prove or disprove.
3. (a) Prove that In(z) is increasing and concave on (0, 00).

(b) Prove by induction on n using (a) that for any positive numbers 1, ... x,,

1

3

[Hint: this is equivalent to showing that Z(In(z1) + -+ + In(zy,)) < In (2(21 + ... 20)).
Think about how to inductively use (20)]



