Lecture 22 - 11/26 - Second derivatives.

Given $f:[a,b] \to \mathbb{R}$ of class C^1 on (a,b), we have seen that f' exists and is continuous on (a,b). If f' is in turn differentiable at $x_0 \in (a,b)$ (in the sense that $\lim_{h\to 0} (f'(x_0+h)-f'(x_0))/h$) exists, we say that f is **twice differentiable** at x_0 and denote $f''(x_0) = (f')'(x_0)$ (also called $\frac{d^2f}{dx^2}(x_0)$, or second-order derivative of f at x_0). If f is twice differentiable at every point of (a,b) and f''(x) is continuous on (a,b), we say that f is **twice continuously differentiable on** (a,b) (or, **of class** C^2 on (a,b)).

The second derivative f'' is useful for: (i) finding local minima or maxima; (ii) determining the concavity of the graph of f.

Theorem 85 (Local properties of f''). Suppose f is differentiable on a neighbordhood of x_0 , and suppose $f''(x_0)$ exists. Define $g(x) := f(x_0) + f'(x_0)(x - x_0)$ (the best linear approximation to f near x_0).

(a) Suppose $f'(x_0) = 0$. If $f''(x_0) > 0$ (resp. < 0), then x_0 is a strict local minimum (resp. maximum).

(b) If x_0 is a local minimum (resp. maximum), then $f''(x_0) \ge 0$ (resp. ≤ 0).

(c) If $f''(x_0) > 0$ (resp. < 0), there exists a neighborhood of x_0 where for all x, $f(x) \ge g(x)$ (resp. $\le g(x)$).

(d) If $f(x) \ge g(x)$ (resp. $\le g(x)$) for all x in a neighborhood of x_0 , then $f''(x_0) \ge 0$ (resp. ≤ 0).

Proof. Proof of (a). If $f''(x_0) > 0$, then for x close enough to x_0 , we write

$$f'(x) = f''(x_0)(x - x_0) + o(x - x_0),$$

so since $f''(x_0) > 0$, there exists $\delta > 0$ such that f'(x) > 0 for $x \in (x_0, x_0 + \delta)$ and f'(x) < 0 for $x \in (x_0 - \delta, x_0)$. In particular, f is strictly decreasing on the left of x_0 and strictly increasing on the right of x_0 , thus f has a local minimum at x_0 . The case $f''(x_0)$ is similar.

Proof of (b). By contradition, if x_0 is local minimum and $f''(x_0) < 0$, then by (a), x_0 is also a strict local maximum, which is impossible.

- Proof of (c). Apply part (a) to the function f(x) g(x). Proof of (d). Apply part (b) to the function f(x) - g(x).
- **Example 50.** 1. In (b), it is not necessary to have $f''(x_0) > 0$ at a strict local minimum: the function $f(x) = x^4$ has a strict local minimum at $x_0 = 0$, yet f''(0) = 0.
 - 2. Moreover, when $f''(x_0) = 0$, we cannot tell a priori if the graph is above or below the tangent line near x_0 , as this could be neither case, see for instance $f(x) = x^3$ at x = 0.

Convexity/concavity. Another way to look at the second derivative is when describing the position of a graph with respect to its local chords (lines joining two points on the curve).

Figure 13: Local considerations when $f''(x_0) \neq 0$.

Figure 14: Local considerations when $f''(x_0) = 0$. Until we look at higher-order derivatives, no conclusion can be made regarding the relative position of f with respect to its tangent line near x_0 . Here, all three functions satisfy f(0) = f'(0) = f''(0) = 0 so the tangent line at x = 0 is y = 0 but the relative positions can be anything near x = 0.

94

Theorem 86. Suppose $f : [a,b] \to \mathbb{R}$ is of class C^2 on (a,b). Let $(x_1,x_2) \subset (a,b)$ and define¹⁷ $g(x) := f(x_1) + (x - x_1) \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

- (i) If f''(x) > 0 for every $x \in (x_1, x_2)$, then f(x) < g(x) for every $x \in (x_1, x_2)$.
- (ii) If f''(x) < 0 for every $x \in (x_1, x_2)$, then f(x) > g(x) for every $x \in (x_1, x_2)$.

Proof. We only prove (i), as (ii) is similar. Set h = f - g. Note that $h(x_1) = h(x_2) = 0$ and h''(x) = f''(x) > 0 for every $x \in (x_1, x_2)$. Since h is continuous on $[x_1, x_2]$ so achieves its maximum there. If there is $x \in (x_1, x_2)$ such that $h(x) \ge 0$, then h has a local maximum x_0 inside (x_1, x_2) , but from the previous theorem, $h''(x_0) \le 0$, which contradicts h'' > 0.

The past two theorems tell us that if f''(x) > 0 throughout an interval, then the graph of f lies above its tangents and below its chords. More generally, we call a function $f : [a, b] \to \mathbb{R}$ convex on [a, b] if for every $x_1 < x_2$ in [a, b], and $t \in (0, 1)$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$$

Similarly, f is concave on [a, b] if for every $x_1 < x_2$ in [a, b], and $t \in (0, 1)$,

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2).$$
(20)

One may define **strictly convex** and **strictly concave** by making the inequalities strict in the last two equations above.

Noticing that in the last two right-hand sides,

$$tf(x_1) + (1-t)f(x_2) = g(tx_1 + (1-t)x_2),$$

where $g(x) = f(x_1) + (x - x_1) \frac{f(x_2) - f(x_1)}{x_2 - x_1}$, Theorem 86 is equivalent to saying that

(i) If f''(x) > 0 for every $x \in [a, b]$, then f is strictly convex on [a, b].

(ii) If f''(x) < 0 for every $x \in [a, b]$, then f is strictly concave on [a, b].

Example 51. 1. The function $f(x) = x^2$ is strictly convex on \mathbb{R} since f''(x) = 2 for all x.

2. The function $f(x) = \exp(x)$ is strictly convex on \mathbb{R} since $\exp''(x) = \exp(x) > 0$ for all x.

Graphically, a function f is convex on [a, b] if its **epigraph** $epi(f) = \{(x, y) : x \in [a, b], y \ge f(x)\}$ is a convex domain of \mathbb{R}^2 (in the sense that, if $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ belong to epi(f), then the segment P_1P_2 belongs entirely to epi(f)).

 $^{^{17}}g$ is the unique affine function passing through $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Exercises for Lecture 22:

- 1. Where are the following functions convex/concave ?
 - (a) $f(x) = (x^2 + 1) \exp(x), x \in \mathbb{R}.$
 - (b) $f(x) = \sqrt{x}, x \in (0, \infty).$
- 2. Suppose that $f:(a,b) \to (c,d)$ is C^2 and invertible (in particular, $f'(x) \neq 0$ for every $x \in (a,b)$).
 - (a) Express $(f^{-1})''(y)$ solely in terms of $f'(f^{-1}(y))$ and $f''(f^{-1}(y))$.
 - (b) If f is strictly convex on (a, b), is it always true that f^{-1} is strictly concave on (c, d)? Prove or disprove.
- 3. (a) Prove that $\ln(x)$ is increasing and concave on $(0, \infty)$.
 - (b) Prove by induction on n using (a) that for any positive numbers $x_1, \ldots x_n$,

$$\sqrt[n]{x_1\cdots x_n} \le \frac{1}{n}(x_1+\cdots+x_n)$$

[Hint: this is equivalent to showing that $\frac{1}{n}(\ln(x_1) + \cdots + \ln(x_n)) \leq \ln(\frac{1}{n}(x_1 + \cdots + x_n))$. Think about how to inductively use (20)]