Lecture 23-11/28 - Taylor Polynomials and approximations.

Second-order Taylor approximation. Back to the problem of locally approximating functions with polynomials, we have seen that if f is of class C^{1} in a neighbourhood of x_{0}, then the function $g(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is the best linear approximation of f near x_{0} in the sense that $f(x)-g(x)=\left(x-x_{0}\right) \varepsilon(x)$ for some function ε satisfying $\lim _{x \rightarrow x_{0}} \varepsilon(x)=0$.

When a function has a second-order derivative, we can consider approximating it with secondorder polynomials. If such an approximation must hold generally for all functions, it must hold in particular for second-order polynomials. In this case, a direct calculation shows that if $f(x)$ is a second-order polynomial, then for any $x_{0} \in \mathbb{R}$ and any x,

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

This suggests that for a general function f such that $f^{\prime \prime}\left(x_{0}\right)$ exists at a point x_{0}, the right-hand side above should be the best quadratic polynomial approximating f near x_{0}. We denote it

$$
T_{2}\left[f, x_{0}\right](x):=\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

the second-order Taylor polynomial of f at x_{0}.
Theorem 87. If f is of class C^{2} in a neighborhood of x_{0}, then one may write for x near x_{0}

$$
f(x)=T_{2}\left[f, x_{0}\right](x)+o\left(\left(x-x_{0}\right)^{2}\right) .
$$

(equivalently, the last term could be written as $\left(x-x_{0}\right)^{2} \eta(x)$, where $\lim _{x \rightarrow x_{0}} \eta(x)=0$) Conversely, if a quadratic polynomial $P(x)$ is such that $f(x)=P(x)+o\left(\left(x-x_{0}\right)^{2}\right)$ for x near x_{0}, then $P(x)=$ $T_{2}\left[f, x_{0}\right]$.

Proof. Set $F(x):=f(x)-T_{2}\left[f, x_{0}\right](x)$, and we must show that for every $\varepsilon>0$ there exists $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|F(x)-F\left(x_{0}\right)\right| \leq\left|x-x_{0}\right|^{2} \varepsilon$. Note that by construction $F\left(x_{0}\right)=$ $F^{\prime}\left(x_{0}\right)=F^{\prime \prime}\left(x_{0}\right)=0$.

Let $\varepsilon>0$. Since $F^{\prime \prime}$ is continuous at x_{0}, there exists δ such that $\left|x-x_{0}\right|<\delta$ implies $\left|F^{\prime \prime}(x)\right|<\varepsilon$. Let $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Applying the Mean Value Theorem to F, we have

$$
F(x)=F(x)-F\left(x_{0}\right)=F^{\prime}\left(x_{1}\right)\left(x-x_{0}\right),
$$

for some x_{1} between x and x_{0} (in particular, $\left|x_{1}-x_{0}\right| \leq\left|x-x_{0}\right|$). Appling the MVT again to F^{\prime}, we have

$$
F^{\prime}\left(x_{1}\right)=F^{\prime}\left(x_{1}\right)-F^{\prime}\left(x_{0}\right)=F^{\prime \prime}\left(x_{2}\right)\left(x_{1}-x_{0}\right),
$$

for some x_{2} between x and x_{0}, in particular, $x_{2} \in\left(x_{0}-\delta, x_{0}+\delta\right)$ so $\left|F^{\prime \prime}\left(x_{2}\right)\right|<\varepsilon$. Piecing it all together, we have

$$
|F(x)|=\left|F^{\prime \prime}\left(x_{2}\right)\right|\left|x_{1}-x_{0}\right|\left|x-x_{0}\right|<\varepsilon\left|x-x_{0}\right|^{2},
$$

hence the proof.
We now prove the converse statement. Suppose $P(x)$ is a quadratic polynomial such that $f(x)=P(x)+o\left(\left(x-x_{0}\right)^{2}\right)$ near x_{0}. By the first part of the theorem, we can write

$$
T_{2}\left[f, x_{0}\right](x)-P(x)=\left(T_{2}\left[f, x_{0}\right](x)-f(x)\right)+(f(x)-P(x))=o\left(\left(x-x_{0}\right)^{2}\right),
$$

since we are summing two $o\left(\left(x-x_{0}\right)^{2}\right)$. Now since $T_{2}\left[f, x_{0}\right](x)-P(x)$ is a quadratic polynomial, it can be written as $a\left(x-x_{0}\right)^{2}+b\left(x-x_{0}\right)+c$, and the only way that $\lim _{x \rightarrow x_{0}} \frac{1}{\left(x-x_{0}\right)^{2}}\left(T_{2}\left[f, x_{0}\right](x)-\right.$ $P(x))=0$, is if all coefficients are zero. Therefore $P=T_{2}\left[f, x_{0}\right]$.

Conversely, such formulas can be useful to compute derivatives in a fast way: if one can write (by any means other than computing derivatives),

$$
f(x)=a+b\left(x-x_{0}\right)+c\left(x-x_{0}\right)^{2}+o\left(\left(x-x_{0}\right)^{2}\right),
$$

then $f\left(x_{0}\right)=a, f^{\prime}\left(x_{0}\right)=b$ and $f^{\prime \prime}\left(x_{0}\right)=2 c$.
Example 52. 1. Near $x=0, f(x)=\frac{1}{1-x^{2}}=1+x^{2}+o\left(x^{2}\right)$. Therefore, $f(0)=1, f^{\prime}(0)=0$, and $f^{\prime \prime}(0)=2$.
2. Near $x=0$, we would like to compute the first two derivatives of $f(x)=\exp (x)(x+2)^{2}$ at $x=0$. Since $\exp (0)=\exp ^{\prime}(0)=\exp ^{\prime \prime}(0)=1$, we can immediately write $\exp (x)=$ $1+x+\frac{1}{2} x^{2}+o\left(x^{2}\right)$. Therefore,

$$
\begin{aligned}
f(x)=\exp (x)(x+2)^{2} & =\left(1+x+\frac{1}{2} x^{2}+o\left(x^{2}\right)\right)\left(4+4 x+x^{2}\right) \\
& =4+8 x+7 x^{2}+o\left(x^{2}\right),
\end{aligned}
$$

and we can therefore read immediately that $f(0)=4, f^{\prime}(0)=8$ and $f^{\prime \prime}(0)=14$.

Higher-order derivatives and Taylor polynomials. We can define differentiability k times as follows: we already treated $k=1,2$ and denote $f^{(1)}=f^{\prime}$ and $f^{(2)}=f^{\prime \prime}$. If f is k-times differentiable and $f^{(k)}$ is differentiable at x_{0}, we say that f is $k+1$ times differentiable at x_{0} and call $f^{(k+1)}\left(x_{0}\right)=\left(f^{(k)}\right)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f^{(k)}\left(x_{0}+h\right)-f^{(k)}\left(x_{0}\right)}{h}$. If $f^{(k)}(x)$ exists for some k and for all x on an interval I, we say that f is k times continuously differentiable on I (or of class C^{k} on I).

When f is of class C^{k} in the neighborhood of x_{0}, we define the n-th Taylor polynomial of f at x_{0}, by

$$
\begin{aligned}
T_{n}\left[f, x_{0}\right](x) & :=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime \prime}\left(x_{0}\right) / 2\left(x-x_{0}\right)^{2}+\cdots+f^{(n)}\left(x_{0}\right) / n!\left(x-x_{0}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
\end{aligned}
$$

Theorem 88 (Taylor's theorem). If f is of class C^{k} in a neighborhood of x_{0}, then

$$
f(x)=T_{n}\left[f, x_{0}\right](x)+o\left(\left(x-x_{0}\right)^{n}\right) .
$$

Conversely, if a polynomial $P(x)$ of degree n is such that $f(x)=P(x)+o\left(\left(x-x_{0}\right)^{n}\right)$ for x near x_{0}, then $P(x)=T_{n}\left[f, x_{0}\right]$.

Proof. The proof is a generalization of Theorem 87 .
Note that if f is a polynomial, then for any $x_{0} \in \mathbb{R}$ and $x \in \mathbb{R}, f(x)=T_{n}\left[f, x_{0}\right](x)$.

Example 53. 1. If $f(x)=3 x^{2}+2 x-5$, then

$$
T_{2}[f, 1](x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2}(x-1)^{2}=8(x-1)+3(x-1)^{2} .
$$

2. If $f(x)=\exp (x)$, then for any $n \in \mathbb{N}, f^{(n)}(0)=\exp (0)=1$. Therefore the Taylor polynomial is given by $T_{n}[\exp , 0](x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$.
3. If $f(x)=\sin x$,

$$
T_{3}[\sin , 0](x)=\sin 0+\left(\sin ^{\prime} 0(x)\right)+\frac{\sin ^{\prime \prime} 0}{2} x^{2}+\frac{\sin ^{(3)} 0}{6} x^{3}=x-\frac{x^{3}}{6} .
$$

Taylor Expansions. While Taylor's theorem gives us an explicit expression for the polynomial which best approximates a given function near x_{0}, this does not mean that one should always compute it by computing derivatives. Many tricks are useful for such computations, a combination of known expansions and algebraic rules, none of which requiring to compute the derivatives of the full function.

Example 54. For each function below, find a Taylor expansion to order 2 at $x_{0}=0$.

1. $f(x)=(\sin x)(x+1)^{4}$. Knowing that $\sin 0=\sin ^{\prime \prime} 0=0$ and $\sin ^{\prime} 0=1$, we first write a Taylor expansion of $\sin x=x+o\left(x^{2}\right)$, therefore we are left computing

$$
f(x)=(\sin x)(x+1)^{4}=\left(x+o\left(x^{2}\right)\right)\left(1+4 x+6 x^{2}+o\left(x^{2}\right)\right)=x+4 x^{2}+o\left(x^{2}\right),
$$

after expanding and using the rules $x^{p} o\left(x^{q}\right)=o\left(x^{p+q}\right)$. Note that all the terms of the form $o\left(x^{3}\right)$ and up are all dumped into $o\left(x^{2}\right)$.
2. $f(x)=\frac{1}{1-x}$. Here we know that for $|x|<1$, the geometric series gives $\frac{1}{1-x}=1+x+x^{2}+\ldots$ In particular,

$$
\frac{1}{1-x}=1+x+x^{2}+\frac{x^{3}}{1-x}=1+x+x^{2}+o\left(x^{2}\right) .
$$

3. $f(x)=e^{x^{2}+1}$. One could write the definition of the exponential $e^{x^{2}+1}=\sum_{k=0}^{\infty} \frac{\left(x^{2}+1\right)^{k}}{k!}$, only to realize that each term in the sum will have a contribution to $T_{2}[f, 0]$. On the other hand, one could write

$$
e^{x^{2}+1}=e \cdot e^{x^{2}}=e\left(1+x^{2}+o\left(x^{2}\right)\right)
$$

and thus $e+e x^{2}$ is the desired answer.
4. When $x_{0} \neq 0$, note that writing a Taylor expansion of $f(x)$ near $x=x_{0}$ is the same as writing a Taylor expansion of the function $h \mapsto f\left(x_{0}+h\right)$ near $h=0$. For example, to write a Taylor expansion of $\frac{1}{x}$ near $x=2$ is the same as writing an expansion of $\frac{1}{2+h}$ near $h=0$. For this we exploit a geometric series again:

$$
\frac{1}{2+h}=\frac{1}{2} \frac{1}{1+h / 2}=\frac{1}{2}\left(1-\frac{h}{2}+\frac{h^{2}}{4}+o\left(h^{2}\right)\right)
$$

where in the last equality, we have used the formula $\frac{1}{1+u}=1-u+\frac{u^{2}}{2}+\ldots$ whenever $|u|<1$. Equivalently,

$$
\frac{1}{x}=\frac{1}{2}-\frac{x-2}{4}+\frac{(x-2)^{2}}{8}+o\left((x-2)^{2}\right) \quad \text { near } x=2 .
$$

Exercises for Lecture 23:

1. Compute the Taylor expansions to order 3 for each of the following functions at the points $x_{0}=0$ and $x_{0}=1$:
(a) $f(x)=\left(x^{2}+1\right)^{25}$.
(b) $f(x)=\frac{x}{x^{2}+1}$.
(c) $f(x)=\left(1+x+2 x^{2}\right)(\sin x)^{2}$.
(d) $f(x)=\sqrt{x+1}$.
2. Let f of class C^{n} near x_{0} with $n \geq 1$. Show that $\left(T_{n}\left[f, x_{0}\right]\right)^{\prime}(x)=T_{n-1}\left[f^{\prime}, x_{0}\right](x)$.
3. Reasoning on Taylor polynomials, prove Leibniz' rule: given f, g of class C^{n} at x_{0}, then $f \cdot g$ is of class C^{n} at x_{0} and

$$
(f \cdot g)^{(n)}\left(x_{0}\right)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}\left(x_{0}\right) g^{(n-k)}\left(x_{0}\right) .
$$

[Hint: $(f \cdot g)^{(n)}\left(x_{0}\right)$ is $n!$ times the coefficient of $\left(x-x_{0}\right)^{n}$ in the product $T_{n}\left[f, x_{0}\right](x) T_{n}\left[g, x_{0}\right](x)$]
4. (a) Show that if $f(x)=1 /(1+x)$, then $T_{n}[f, 0](x)=\sum_{k=0}^{n}(-1)^{k} x^{k}$.
(b) Deduce $T_{n}[g, 0](x)$ for $g(x)=\ln (1+x)$.
[hint: $g^{\prime}(x)=$?]
(c) Find $T_{n}[g, 0](x)$ if $g(x)=\tan ^{-1}(x)$.
5. Let $f(x)=\exp \left(-\frac{1}{x}\right)$ for $x>0$ and $f(x)=0$ for $x<0$.
(a) Show that f can be extended into a continuous function at $x=0$ with the value $f(0)=0$.
(b) For $x>0$, prove by induction that for any $n \in \mathbb{N}$, there exists a polynomial P_{n} such that $f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) \exp \left(\frac{-1}{x}\right)$. Deduce that $\lim _{x \rightarrow 0^{+}} f^{(n)}(x)=0$ and therefore, $f^{(n)}$ can be extended continuously at $x=0$ with the value 0 .
(c) Deduce that $T_{n}[f, 0](x)=0$ for any $n \in \mathbb{N}$.

