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Lecture 23 - 11/28 - Taylor Polynomials and approximations.

Second-order Taylor approximation. Back to the problem of locally approximating functions
with polynomials, we have seen that if f is of class C! in a neighbourhood of xg, then the function
g(x) = f(zo) + f'(x0)(x — xg) is the best linear approximation of f near zp in the sense that
f(z) —g(x) = (x — x0)e(x) for some function e satisfying lim,_,;, e(z) = 0.

When a function has a second-order derivative, we can consider approximating it with second-
order polynomials. If such an approximation must hold generally for all functions, it must hold in
particular for second-order polynomials. In this case, a direct calculation shows that if f(z) is a
second-order polynomial, then for any zg € R and any =,

£(2) = $ao) + /(@) (& = w0) + 3 1" (o) (& — o)

This suggests that for a general function f such that f”(z() exists at a point xg, the right-hand
side above should be the best quadratic polynomial approximating f near xg. We denote it

1
B[ f, wol(x) := (x0) + f'(wo) (@ — wo) + 5 f" (o) ( — 20)*.
the second-order Taylor polynomial of f at zg.

Theorem 87. If f is of class C? in a neighborhood of xo, then one may write for x near xg

f(@) = Tl f, 0] (x) + o((x = z0)*).

(equivalently, the last term could be written as (x — x¢)?n(x), where limy_,, n(x) = 0) Conversely,
if a quadratic polynomial P(z) is such that f(x) = P(x)+ o((x — x0)?) for x near zo, then P(x) =
T2 [f7 l'()] :

Proof. Set F(x) := f(z) — Ta[f, zo)(x), and we must show that for every £ > 0 there exists § > 0
such that |z — x| < & implies |F(x) — F(x0)| < |x — xo|%c. Note that by construction F(zo) =
F'(x¢) = F"(x0) = 0.

Let € > 0. Since F” is continuous at xg, there exists § such that |z —xz¢| < § implies |F"(z)| < e.
Let z € (xg — d, 20 + J). Applying the Mean Value Theorem to F', we have

P(z) = F(x) = F(zo) = F'(21)(x — x9),

for some x; between z and z¢ (in particular, |z — x| < |z — z¢|). Appling the MVT again to F”,
we have

F'(x1) = F'(x1) — F'(x0) = F"(x2)(x1 — o),

for some x9 between x and zg, in particular, xo € (xg — d, 29 + 0) so |F"(x2)| < €. Piecing it all
together, we have

|F ()| = |[F"(x2)||21 — wolle — @o| < |z — of?,

hence the proof.

We now prove the converse statement. Suppose P(z) is a quadratic polynomial such that
f(x) = P(z) + o((x — w0)?) near xg. By the first part of the theorem, we can write

Blf, wol(x) — P(x) = (To[f, zo](x) — f(2)) + (f(z) — P(2)) = o(z — x0)*),
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since we are summing two o((x — x9)?). Now since Ta[f, zo](z) — P(x) is a quadratic polynomial, it

can be written as a(z — x0)% + b(z — mg) + ¢, and the only way that lim,_,, m(Tg[f, zo)(z) —

P(z)) =0, is if all coefficients are zero. Therefore P = Ts[f, x¢]. O

Conversely, such formulas can be useful to compute derivatives in a fast way: if one can write
(by any means other than computing derivatives),

f@) =a+blz —x0) + c(z — 20)* + o((z — 20)*),

then f(zo) = a, f'(xo) = b and f"(x0) = 2c.

Example 52. 1. Near x =0, f(z) = 1jx2 =1+ 22 + o(z?). Therefore, f(0) =1, f'(0) =0,
and f"(0) = 2.

2. Near x = 0, we would like to compute the first two derivatives of f(x) = exp(z)(x + 2)?
at x = 0. Since exp(0) = exp/(0) = exp”(0) = 1, we can immediately write exp(x) =
1+z + 322 4 o(z?). Therefore,

f(@) =exp(z)(z+2)* =1 +x+ %xQ + o(x?))(4 + 4z + 2?)

=4+ 8z + Tz* + o(?),

and we can therefore read immediately that f(0) =4, f'(0) =8 and f"(0) = 14.

Higher-order derivatives and Taylor polynomials. We can define differentiability & times
as follows: we already treated & = 1,2 and denote f() = f" and f® = f”. If f is k-times
differentiable and f*) is differentiable at zo, we say that f is k + 1 times differentiable at zo and
call fEHD(z0) = (F®) (20) = limp_0 f(k)(xﬁh,);f(k)(xo). If f*)(z) exists for some k and for all x
on an interval I, we say that f is k times continuously differentiable on I (or of class C* on
I).

When f is of class C* in the neighborhood of zg, we define the n-th Taylor polynomial of f at
To, by

Tolf, zo) () == f(zo) + f'(w0)(x — x0) + " (w0)/2(z — 20)> + - - - + ™ (o) /n!(z — 20)"

Theorem 88 (Taylor’s theorem). If f is of class C in a neighborhood of xq, then

f(@) = Tulf, wol(x) + o((z — 0)").

Conversely, if a polynomial P(x) of degree n is such that f(x) = P(x) + o((z — xo)™) for x near
xo, then P(x) = T,[f, zo].

Proof. The proof is a generalization of Theorem 87. O

Note that if f is a polynomial, then for any xo € R and = € R, f(z) = T,,[f, zo](z).
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Example 53. 1. If f(x) = 322 +2x — 5, then

D)) = £0) + £ -1+ T @02 =8 - 1) 36 12

2. If f(z) = exp(z), then for anyn € N f(n) (0) = exp(0) = 1. Therefore the Taylor polynomial
is given by T,[exp,0)(z) = Yo &
5. If f() = sin,
sin”0 , sin®0 , x

T[sin, 0](z) = sin0 + (sin’ 0(z)) + 5 ¢ + g Y =T ¢

Taylor Expansions. While Taylor’s theorem gives us an explicit expression for the polynomial
which best approximates a given function near xg, this does not mean that one should always
compute it by computing derivatives. Many tricks are useful for such computations, a combination
of known expansions and algebraic rules, none of which requiring to compute the derivatives of the
full function.

Example 54. For each function below, find a Taylor expansion to order 2 at xg = 0.

1. f(z) = (sinz)(z +1)%. Knowing that sin0 = sin” 0 = 0 and sin’ 0 = 1, we first write a Taylor
expansion of sinx = x + o(z?), therefore we are left computing

f(z) = (sinz)(x + 1)* = (x + o(x?))(1 + 4z + 622 + o(z?)) = = + 422 + o(z?),

after expanding and using the rules xPo(x?) = o(xP*9). Note that all the terms of the form
o(x3) and up are all dumped into o(z?).

2. f(z) = 1— Here we know that for |x| < 1, the geometric series gives 1 =l+z+a2+.
In particular,
3

1
——=1+az+2*+ =1+ +2” +o(a?).

1—=x 1—=x

3. flx) = e®*+1. One could write the definition of the exponential e+l = Yoo (@ ;r,l , only
to realize that each term in the sum will have a contribution to Ts[f,0]. On the other hand,

one could write
P et e(1 + 22 +0(x2))’
and thus e + ex? is the desired answer.
4. When x¢ # 0, note that writing a Taylor expansion of f(x) near x = xq is the same as writing
a Taylor expansion of the function h — f(xo+ h) near h = 0. For example, to write a Taylor

expansion of% near r = 2 is the same as writing an expansion of QJ%h near h = 0. For this
we exploit a geometric series again:

1 11 1 h  h?
_1 — (1=
5+ h 214 h)2 2< 2+14+0())’

where in the last equality, we have used the formula p%u =1—-u+ “72 +... whenever |u| < 1.
Equivalently,
1 -2 (z-2)?

1
—2)2 =2
~ =3 1 + 3 +o((x —2)%) near T
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Exercises for Lecture 23:

1. Compute the Taylor expansions to order 3 for each of the following functions at the points
xg =0 and zg = 1:

(a) f(z) = (2* +1)®.

(b) f(z) = 5

(c) f(z) =1+ z + 22?)(sinz)?.
@) () =i T

2. Let f of class C™ near xo with n > 1. Show that (T,,[f, zo])'(z) = Th-1[f’, zo](z).

3. Reasoning on Taylor polynomials, prove Leibniz’ rule: given f, g of class C™ at xg, then f - g
is of class C™ at xp and

(70 a0) =3 () 9 an)g™ P o)

k=0
[Hint: (f-g)™ (z0) is n! times the coefficient of (x—z¢)" in the product T}, [f, zo](z)Tp[g, zo] ()]

4. (a) Show that if f(z) = 1/(1 + x), then T,,[f,0](z) = > p_,(—1)kzr.
(b) Deduce T),[g,0](z) for g(x) = In(1 + x). [hint: ¢'(z) = 7]
(c) Find T},[g,0](z) if g(x) = tan~!(x).

5. Let f(z) =exp(—21) for 2 > 0 and f(z) = 0 for z < 0.

(a) Show that f can be extended into a continuous function at = 0 with the value f(0) = 0.

(b) For x > 0, prove by induction that for any n € N, there exists a polynomial P, such
that f(z) = P, (1)exp(=1). Deduce that lim, g+ f™(z) =0 and therefore, f(™ can
be extended continuously at x = 0 with the value 0.

(c¢) Deduce that T,[f,0](x) = 0 for any n € N.



