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Lecture 23 - 11/28 - Taylor Polynomials and approximations.

Second-order Taylor approximation. Back to the problem of locally approximating functions
with polynomials, we have seen that if f is of class C1 in a neighbourhood of x0, then the function
g(x) = f(x0) + f ′(x0)(x − x0) is the best linear approximation of f near x0 in the sense that
f(x)− g(x) = (x− x0)ε(x) for some function ε satisfying limx→x0 ε(x) = 0.

When a function has a second-order derivative, we can consider approximating it with second-
order polynomials. If such an approximation must hold generally for all functions, it must hold in
particular for second-order polynomials. In this case, a direct calculation shows that if f(x) is a
second-order polynomial, then for any x0 ∈ R and any x,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2.

This suggests that for a general function f such that f ′′(x0) exists at a point x0, the right-hand
side above should be the best quadratic polynomial approximating f near x0. We denote it

T2[f, x0](x) := (x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2.

the second-order Taylor polynomial of f at x0.

Theorem 87. If f is of class C2 in a neighborhood of x0, then one may write for x near x0

f(x) = T2[f, x0](x) + o((x− x0)2).

(equivalently, the last term could be written as (x− x0)2η(x), where limx→x0 η(x) = 0) Conversely,
if a quadratic polynomial P (x) is such that f(x) = P (x) + o((x− x0)2) for x near x0, then P (x) =
T2[f, x0].

Proof. Set F (x) := f(x) − T2[f, x0](x), and we must show that for every ε > 0 there exists δ > 0
such that |x − x0| < δ implies |F (x) − F (x0)| ≤ |x − x0|2ε. Note that by construction F (x0) =
F ′(x0) = F ′′(x0) = 0.

Let ε > 0. Since F ′′ is continuous at x0, there exists δ such that |x−x0| < δ implies |F ′′(x)| < ε.
Let x ∈ (x0 − δ, x0 + δ). Applying the Mean Value Theorem to F , we have

F (x) = F (x)− F (x0) = F ′(x1)(x− x0),

for some x1 between x and x0 (in particular, |x1 − x0| ≤ |x− x0|). Appling the MVT again to F ′,
we have

F ′(x1) = F ′(x1)− F ′(x0) = F ′′(x2)(x1 − x0),

for some x2 between x and x0, in particular, x2 ∈ (x0 − δ, x0 + δ) so |F ′′(x2)| < ε. Piecing it all
together, we have

|F (x)| = |F ′′(x2)||x1 − x0||x− x0| < ε|x− x0|2,

hence the proof.

We now prove the converse statement. Suppose P (x) is a quadratic polynomial such that
f(x) = P (x) + o((x− x0)2) near x0. By the first part of the theorem, we can write

T2[f, x0](x)− P (x) = (T2[f, x0](x)− f(x)) + (f(x)− P (x)) = o((x− x0)2),
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since we are summing two o((x−x0)2). Now since T2[f, x0](x)−P (x) is a quadratic polynomial, it
can be written as a(x− x0)2 + b(x− x0) + c, and the only way that limx→x0

1
(x−x0)2 (T2[f, x0](x)−

P (x)) = 0, is if all coefficients are zero. Therefore P = T2[f, x0].

Conversely, such formulas can be useful to compute derivatives in a fast way: if one can write
(by any means other than computing derivatives),

f(x) = a+ b(x− x0) + c(x− x0)2 + o((x− x0)2),

then f(x0) = a, f ′(x0) = b and f ′′(x0) = 2c.

Example 52. 1. Near x = 0, f(x) = 1
1−x2 = 1 + x2 + o(x2). Therefore, f(0) = 1, f ′(0) = 0,

and f ′′(0) = 2.

2. Near x = 0, we would like to compute the first two derivatives of f(x) = exp(x)(x + 2)2

at x = 0. Since exp(0) = exp′(0) = exp′′(0) = 1, we can immediately write exp(x) =
1 + x+ 1

2x
2 + o(x2). Therefore,

f(x) = exp(x)(x+ 2)2 = (1 + x+
1

2
x2 + o(x2))(4 + 4x+ x2)

= 4 + 8x+ 7x2 + o(x2),

and we can therefore read immediately that f(0) = 4, f ′(0) = 8 and f ′′(0) = 14.

Higher-order derivatives and Taylor polynomials. We can define differentiability k times
as follows: we already treated k = 1, 2 and denote f (1) = f ′ and f (2) = f ′′. If f is k-times
differentiable and f (k) is differentiable at x0, we say that f is k + 1 times differentiable at x0 and

call f (k+1)(x0) = (f (k))′(x0) = limh→0
f (k)(x0+h)−f (k)(x0)

h . If f (k)(x) exists for some k and for all x
on an interval I, we say that f is k times continuously differentiable on I (or of class Ck on
I).

When f is of class Ck in the neighborhood of x0, we define the n-th Taylor polynomial of f at
x0, by

Tn[f, x0](x) := f(x0) + f ′(x0)(x− x0) + f ′′(x0)/2(x− x0)2 + · · ·+ f (n)(x0)/n!(x− x0)n

=

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

Theorem 88 (Taylor’s theorem). If f is of class Ck in a neighborhood of x0, then

f(x) = Tn[f, x0](x) + o((x− x0)n).

Conversely, if a polynomial P (x) of degree n is such that f(x) = P (x) + o((x − x0)n) for x near
x0, then P (x) = Tn[f, x0].

Proof. The proof is a generalization of Theorem 87.

Note that if f is a polynomial, then for any x0 ∈ R and x ∈ R, f(x) = Tn[f, x0](x).
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Example 53. 1. If f(x) = 3x2 + 2x− 5, then

T2[f, 1](x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2
(x− 1)2 = 8(x− 1) + 3(x− 1)2.

2. If f(x) = exp(x), then for any n ∈ N, f (n)(0) = exp(0) = 1. Therefore the Taylor polynomial

is given by Tn[exp, 0](x) =
∑n

k=0
xk

k! .

3. If f(x) = sinx,

T3[sin, 0](x) = sin 0 + (sin′ 0(x)) +
sin′′ 0

2
x2 +

sin(3) 0

6
x3 = x− x3

6
.

Taylor Expansions. While Taylor’s theorem gives us an explicit expression for the polynomial
which best approximates a given function near x0, this does not mean that one should always
compute it by computing derivatives. Many tricks are useful for such computations, a combination
of known expansions and algebraic rules, none of which requiring to compute the derivatives of the
full function.

Example 54. For each function below, find a Taylor expansion to order 2 at x0 = 0.

1. f(x) = (sinx)(x+ 1)4. Knowing that sin 0 = sin′′ 0 = 0 and sin′ 0 = 1, we first write a Taylor
expansion of sinx = x+ o(x2), therefore we are left computing

f(x) = (sinx)(x+ 1)4 = (x+ o(x2))(1 + 4x+ 6x2 + o(x2)) = x+ 4x2 + o(x2),

after expanding and using the rules xpo(xq) = o(xp+q). Note that all the terms of the form
o(x3) and up are all dumped into o(x2).

2. f(x) = 1
1−x . Here we know that for |x| < 1, the geometric series gives 1

1−x = 1 + x+ x2 + . . .
In particular,

1

1− x
= 1 + x+ x2 +

x3

1− x
= 1 + x+ x2 + o(x2).

3. f(x) = ex
2+1. One could write the definition of the exponential ex

2+1 =
∑∞

k=0
(x2+1)k

k! , only
to realize that each term in the sum will have a contribution to T2[f, 0]. On the other hand,
one could write

ex
2+1 = e · ex2 = e(1 + x2 + o(x2)),

and thus e+ ex2 is the desired answer.

4. When x0 6= 0, note that writing a Taylor expansion of f(x) near x = x0 is the same as writing
a Taylor expansion of the function h 7→ f(x0 +h) near h = 0. For example, to write a Taylor
expansion of 1

x near x = 2 is the same as writing an expansion of 1
2+h near h = 0. For this

we exploit a geometric series again:

1

2 + h
=

1

2

1

1 + h/2
=

1

2

(
1− h

2
+
h2

4
+ o(h2)

)
,

where in the last equality, we have used the formula 1
1+u = 1−u+ u2

2 + . . . whenever |u| < 1.
Equivalently,

1

x
=

1

2
− x− 2

4
+

(x− 2)2

8
+ o((x− 2)2) near x = 2.
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Exercises for Lecture 23:

1. Compute the Taylor expansions to order 3 for each of the following functions at the points
x0 = 0 and x0 = 1:

(a) f(x) = (x2 + 1)25.

(b) f(x) = x
x2+1

.

(c) f(x) = (1 + x+ 2x2)(sinx)2.

(d) f(x) =
√
x+ 1.

2. Let f of class Cn near x0 with n ≥ 1. Show that (Tn[f, x0])
′(x) = Tn−1[f

′, x0](x).

3. Reasoning on Taylor polynomials, prove Leibniz’ rule: given f, g of class Cn at x0, then f · g
is of class Cn at x0 and

(f · g)(n)(x0) =
n∑
k=0

(
n

k

)
f (k)(x0)g

(n−k)(x0).

[Hint: (f ·g)(n)(x0) is n! times the coefficient of (x−x0)n in the product Tn[f, x0](x)Tn[g, x0](x)]

4. (a) Show that if f(x) = 1/(1 + x), then Tn[f, 0](x) =
∑n

k=0(−1)kxk.

(b) Deduce Tn[g, 0](x) for g(x) = ln(1 + x). [hint: g′(x) = ?]

(c) Find Tn[g, 0](x) if g(x) = tan−1(x).

5. Let f(x) = exp(− 1
x) for x > 0 and f(x) = 0 for x < 0.

(a) Show that f can be extended into a continuous function at x = 0 with the value f(0) = 0.

(b) For x > 0, prove by induction that for any n ∈ N, there exists a polynomial Pn such
that f (n)(x) = Pn( 1x) exp(−1x ). Deduce that limx→0+ f

(n)(x) = 0 and therefore, f (n) can
be extended continuously at x = 0 with the value 0.

(c) Deduce that Tn[f, 0](x) = 0 for any n ∈ N.


