
Game Development
Experience

CMPM 120

1

Where you are

2

120 16?

17?

Playing
experience

12B

80K

Playing
experience

} {
Design

Appreciation
Game Studies

History

Programming
Language

Data Structures
Environments

Mostly narrow,
played for fun,
as a consumer

Teamwork
Ideation
Deployment
Finishing

Engines
Adv. Rendering
Efficiency
New Interfaces

Broad, play for
study & analysis,
as design, dev, and
producer

You are here

Why You Are Here

3

➔ Learn the basic principles of game programming and
put them into practice

➔ Learn how to do the low-level implementation so we
can turn ideas into working games

➔ Learn how technology and teamwork affect game
design (PLO 7 & 8)

The Team

Isaac Karth

➔ he/him
➔ Teaching CMPM 120
➔ ikarth@ucsc.edu
➔ Computational Media PhD student (I do procedural generation stuff)

Tad Leckman

➔ Teaching AGPM 120

4

mailto:ikarth@ucsc.edu

Who are you?

5

If you think of yourself as a programmer:
What is one artwork that you like?

If you think of yourself as an artist:
What is one programming element that
you like?

Who are you?

6

If you think of yourself as a programmer:
Albrecht Dürer, Young Hare

If you think of yourself as an artist:
(map (reduce '(:plus-python [list-comprehension]))

Programming
Videogames is
Difficult

Some Bad News

Especially in 10 weeks,
in Summer,
and working in a team.

7

var Environment = {

code: ["HTML5", "CSS", "JavaScript"],
framework: "Phaser",
collaboration: ["git", "GitHub"],
editor: ["Sublime Text", "Atom", "Chrome", "etc"],
server: "Python"

}

8

9

10

Why Phaser?

➔ Free!

➔ Fast

➔ Because I said so!

➔ Actively supported and documented

➔ Well-structured and (generally) genre agnostic

➔ Gives us lots of game-specific functions “for free” (e.g., game loop,

state management, physics, input handling, etc.)

➔ Lots and lots and lots of community resources

➔ Used in high-quality, actual, real-life, professional games

➔ Will help you learn to love again despite the deep void in your heart

Ten years ago, we would

have used Flash

Nathan told me this, so it must be true

Phaser CE

11

Why not Phaser 3?

➔ Probably will be using 3 next Spring
◆ Nathan is in the process of updating his slides

➔ A few major features are still not in place
➔ The tutorials are in the process of being converted
➔ Phaser CE is not "worse" than Phaser 3
➔ Phaser CE is still actively supported

◆ Don't underestimate stability
➔ This is not the last time that you will encounter this

situation in your career

12

There is no perfect...
...no perfect language
...no perfect framework
...no perfect engine

13

The sooner you learn this, the better.
You should be grateful

I'm not forcing you to

learn ClojureScript.

14

Your game's scope:
small

15

Your game's scope:
tiny

16

No

17

No

18

No

19

No

20

No

21

No

22

No

23

No

24

Yes

No

Ambitiously small

Mechanic-centric

Well-structured

Expressive

Idea-driven

Achievable

2d :)

25

Every one of you
can program a
videogame

Some Good News

(And we have proof)

26

27

Lazy River: an endless drunker

https://pentagram.itch.io/lazy-river

Table Manners: a game about stealing sushi
28

https://superchowder.itch.io/table-manners

Gravobot: a 2D puzzle platformer with a gravity orb mechanic
29

https://gigsabyte.itch.io/gravobot

Tiny Steps: a storybook game wherein you play as the CUTEST mouse
30

https://people.ucsc.edu/~trund/CMPM120/TinySteps/myGame/

rLDQ: a minigame collection of mundane daily tasks
31

https://yashimvsolanki.itch.io/rldq-real-life-done-quick

The Light: a survival typing game (!?)
32

https://hkst17.itch.io/the-light

Any style or genre
you choose is fine
with us*

Some More Good News

*As long as you do so with
creativity, thoughtfulness,
and professionalism

33

The Runs: a very mature game
34

StumpJumper: a commercial UCSC game
35

36

Team of six, 10-minute game, 6 months, $25K Budget

Foreshadowing Your Future

37

Schedule Overview*

38

Week 1: Intro, Web Dev, Phaser Intro
Week 2: Loops, States, Assets, Pong
Week 3: JavaScript, Prefabs, Input, Collision
Week 4: Debugging, Camera, State Machines
Week 5: Tilemaps, P2 Physics, Runner Showcase
Week 6: Particles, git, Time
Week 7: Text, Fonts, CSS
Weeks 8–9: Audio, Guest Talks, Open Topics
Week 10: Final Presentations aka The TRIAL of WILL

*This will inevitably change a bit

There are no labs in the summer

However, I will have office hours:

Engineering 2, room 256

➔ Wednesday, 10am - 11am
➔ Thursday, 11am - 12pm

39

Canvas Resources

Syllabus: https://canvas.ucsc.edu/courses/26569

40

https://canvas.ucsc.edu/courses/26569

Policies & Expectations

41

Attendance

42

Respect your classmates' time

Attendance is mandatory for presentations

Lateness
This is a fast class and you need to stay on track.

Presentations need to happen in person

43

Devices
Respect the time and attention of those around you.

(And respect yourself too.)

44

Readings
Designed to help you learn the material

45

Slides & Source
Code

These will be available in our class Drive folder a day or two after class

46

Collaboration &
Help

You are encouraged to help each other,
but don't shortcut your own programming.

47

The Citation Model
Link to your sources!

I trust you to program ethically and responsibly

48

Grading

25% Readings & Small Assignments

25% Endless Runner Project

50% Final Game

49

Disability
Resources

Please let me know how I can help

50

Communication
Talk to us early and often.

Don't let problems pile up.

51

Respect & Honesty
A reciprocal operation.

52

Any questions?
We're excited you're here!

53

Your first reading assignment

54

"Learning Web Design"
There's a quiz.

It is supposed to be easy if you know the subject,
and helpful if you don't.

You can retake it as many times as you want.

It is due by the end of Friday

HTML + CSS + JS
Modern Web Development

55

56

57

58

HTML: semantic layer
(how a page is described)

CSS: presentation layer
(how a page looks)

JavaScript: interaction layer
(how a page behaves)

59

Before we start...

What the heck is
the Internet?

60

On the Internet, but not actually *the* Internet...

61

Also not the Internet...

62

Still not the Internet...

This is The Internet (but not the Internet we're talking about)
63

The Internet is a diverse network of connected
computers that use a variety of standardized
protocols to send and receive information 64

The World Wide Web is just one (of many) ways to
send and receive information via the Internet.

It uses HTTP as its communication protocol,
HTML as a language to describe and structure
information, browsers to interpret HTML, and
hypertext to link documents together

65

66

What's this stuff?

67

User Agent
(browser)

protocol
subdomain

domain

top-level
domain

Uniform Resource Locator
(URL)

more stuff can go
here

68

protocol://subdomain.domain.tld:port-number/path?parameters

69

client

browser

<HTML>

remote

server

<HTML>

A basic model of how the web works

70

client

browser

<HTML>

"Client-side" or "front end" applications
run on our local machine

➔ Limited by the resources of the
local machine

Client

71

remote

server

<HTML>

Server

"server-side" or "back end" applications run on
a remote machine

➔ Limited by the resources
of the remote machine

➔ Are often virtual machines
◆ Several can share a host machine
◆ Or can be running on a cluster of host servers

May not even be a file:
the html might be

generated dynamically

72

You can serve websites locally

browser

<HTML>

server

<HTML>

73

The easiest way to run a local server is with Python

Python 2:

python -m SimpleHTTPServer
Python 3:

python -m http.server

If you don't have Python on your machine, install it.
https://www.python.org/downloads/
https://www.anaconda.com/distribution/

https://www.python.org/downloads/
https://www.anaconda.com/distribution/

74

client

browser

<HTML>

remote

server

<HTML>

Technologies

HTML
CSS

JavaScript

PHP
Python

Ruby
Clojure
node.js

HTML = ???

75

HTML = Hypertext Markup Language

76

77

78

79

Marking up text gives it
structure and meaning

language semantic

80

HTML uses
standardized tags to

markup text

Tags provide semantic
meaning to content

<!DOCTYPE>
<html>
</html>

81

All major browsers
have developer tools

But every browser renders
webpages slightly differently.

View Source
The 90s web designer's

best friend

82

In Safari: Preferences > Advanced > Show Develop Menu...

83

Developer Tools Keyboard Shortcuts

84

Command+Option+I
OsX

F12 or Control+Shift+I
Windows

CSS = ???

85

CSS = Cascading Style Sheets

86

CSS: Let me sum up

87

➔ CSS separates presentation from structure

➔ CSS is a separate language with its own syntax

➔ CSS statements are called rules

➔ Rules contain a selector and a declaration

➔ Style rules "cascade" downward

➔ CSS definitions may live in a <style> tag (usually bad) or be linked
externally (much better)

body {
font-family: "Arial";
font-size: 14px;
background-color: #facade;

}

h1 {
border: 1px dotted red;

}

h2 {
font-variant: small-caps;

}

.green {
color: green;

}

/* h1 {
font-family: serif;
font-size: 5em;

} */

88

But what about...

What is HTML5?

89

90

👍

<canvas> </canvas>
An HTML element that allows us to draw graphics using scripting (i.e. JavaScript).

91

92

plugin native

target container
for our games

93

HTML5 provides a

94

HTML, CSS, and JS combined

The
Document
Object
Model

95

96

“A Web page is a document. This document can be either
displayed in the browser window, or as the HTML source. But it
is the same document in both cases. The Document Object
Model (DOM) provides another way to represent, store and
manipulate that same document. The DOM is a fully
object-oriented representation of the web page, and it can be
modified with a scripting language such as JavaScript.”

MDN

https://commons.wikimedia.org/wiki/File:DOM-model.svg
97

https://commons.wikimedia.org/wiki/File:DOM-model.svg

JS = JavaScript

98

JavaScript Overview

99

➔ First developed in 1995 at Netscape (for Navigator 2.0)

➔ Not really related to Java

➔ Actually a scripting language (domain-specific for web environment)

➔ Relies on host for input/output (e.g., browser)

➔ Multi-paradigm (e.g., procedural, functional, OOP, etc.)

➔ Dynamic (i.e., executes at runtime)

➔ Loosely typed

➔ Standardized as ECMAScript

➔ Historically maligned/praised for its flexibility

JavaScript
Types

number

string

Boolean

Object
Function
Array
Date
RegExp

null

undefined

100

JavaScript
Types

// number
var year = 2019;
var course_number = 120;

// string
var name = "Isaac Karth";

// Boolean
var ownsCar = false;

//Object (Function)
var addNumbers = function(a, b) {

return a + b;
}
//Object (Array)
var = favGames = ['Thief: The Dark Project', 'SimCity 2000',
'Heaven's Vault', 'Crusader Kings 2', 'Pathologic 2']
//Object (Date)
var today = new Date(2019, 6, 25);
//Object (RegExp)
var re= new RegExp('\\w');

var the_abyss = null;

undefined // it's complicated

101

Some examples

Bring your laptop!
(if you have one)

Next Class:

102

