
Q:
What is one problem you had
(or are having) during the
programming assignment?

1

CMPM 120

One quiz question was wrong

let counter = 4;
for(; counter < 15; counter = counter + 1) {
 if(0 == counter % 4) {
 break
 }
}
console.log(counter)

2

This was supposed to be a 3

CMPM 120

JavaScript Notes: Numbers

3

➔ Unlike C and Java, JavaScript doesn't have integers.
◆ All numbers are floating point

● 0.1 + 0.2 == 0.30000000000000004
◆ Though integer values are respected unless they're added to an non-integer

● 1 + 2 == 3
◆ And be careful with strings, because with strings + means concatenate:

● 1 + "2" == "12"
◆ Use parseInt() instead: parseInt("2", 10) == 2
◆ For advanced math functions, you can use the Math object:

● Math.Sin();
● Math.PI
● Et cetera

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

Loops and States
What makes videogames different is

4

CMPM 120

5

Almost every game has one, no
two are exactly alike, and
relatively few programs outside of
games use them.

Game Programming Patterns, p. 304

6

Why do we need
a game loop?

CMPM 120

7

Games keep updating even when
the user isn't providing input

CMPM 120

8

Process Input

Update

Render

A gamp loop processes user input
but doesn't wait for it.

CMPM 120

9

Process Input

Update

Render

while (true) { ← repeat forever
 processInput(); ← handle user input

 since the last call
 update(); ← advance the game

 simulation one step
 render(); ← draw the game so the

 player can see it
}

CMPM 120

10

Or in other words, what is the
game's frame rate?

while (true) {
 processInput();

 update();

 render();

}

Q: With this basic loop, how fast
will the game state advance?

🕑?

CMPM 120

11

...and on the thing doing the work

while (true) {
 processInput();

 update();

 render();

}

A: It depends on how much work
each step is doing...

🕑?

CMPM 120

12

...and on the thing doing the work

while (true) {
 processInput();

 update();

 render();

}

A: It depends on how much work
each step is doing...

💻

🔨

CMPM 120

13

What is the speed of the
underlying platform?
CPU speed, memory resources, screen refresh rate,
operating system preemption, etc.

How much work needs to be
done each frame?
Physics, on-screen objects, collisions, simulation, etc.

💻

🔨

CMPM 120

14

For some videogames, this is a
constant
For example, games that run on consoles have predictable
resource constraints.

How much work needs to be
done each frame?
Physics, on-screen objects, collisions, simulation, etc.

💻

🔨

CMPM 120

15

On the web, this changes
Not only will different devices have different resources,
but the amount of processing time available for the game
can change!

How much work needs to be
done each frame?
Physics, on-screen objects, collisions, simulation, etc.

💻

🔨

CMPM 120

16

Slower hardware will run slower and faster
hardware will run faster

while (true) {
 processInput();

 update();

 render();

}

This basic loop doesn't handle time

This is a big problem
when emulating older
games that assumed a
fixed amount of time
per frame!

CMPM 120

17

If you’re building your game on top of an
OS or platform that has a graphic UI and
an event loop built in, then you have two
application loops in play. They’ll need to
play nice together.

Game Programming Patterns, p. 315

CMPM 120

18

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

If we're using just JavaScript and the browser...

...we can update our loop with a callback function.

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

CMPM 120

19

If we're using just JavaScript and the browser...

...we can update our loop with a callback function.

⇐ Why is update() before draw()?

4. at the end of mainLoop(), add mainLoop() as a callback again!

2. Add mainLoop() as a callback once

3. mainLoop() gets called by the window
1. Declare a function called "mainLoop"

CMPM 120

Callback Function

This is a very common pattern in web development, because it is a good way
to create an API for an event-driven program.

They let programs call code that hasn't been written yet.

20

A callback function is a function passed into another function as an
argument, which is then invoked inside the outer function to complete some
kind of routine or action.

https://developer.mozilla.org/en-US/docs/Glossary/Callback_function

https://developer.mozilla.org/en-US/docs/Glossary/Callback_function

CMPM 120

21

A fast loop needs to wait until the next update is ready

work wait work wait work wait work wait work wait work wait

CMPM 120

22

A slow loop also needs track the time elapsed
and run updates until it can 'catch up'

1 2 3 4

Which is a problem if it gets too far behind...

CMPM 120

There are solutions for this you can explore in depth...

23

https://isaacsukin.com/news/2015/01/detailed-explanation-javascript-game-loops-and-timing

https://isaacsukin.com/news/2015/01/detailed-explanation-javascript-game-loops-and-timing

CMPM 120

...but Phaser takes care of the game loop for us.

24

CMPM 120

Phaser's logic update sequence:

25

Our code is run here

Cleanup and
preparation for
updating

Rest of the logic
updating

Post-update cleanup

}
}
}

Break

26

States

27

Managing

CMPM 120

28

States bundle up a series of
methods that help get the
program into and potentially out
of a section of gameplay.

An Introduction to HTML5 Game
Development with Phaser.js, p.58

CMPM 120

29

You can think of states like spaces on a game board...

♟

...where your game piece can only be in one space at a time

This is also called a
Finite State Machine (FSM)

CMPM 120

30

Boot Menu Pre-Game Game Game Over

High Score
(OS)

CMPM 120

31

Credits Title Spawn Play

Modal Menu Game Over Legacy

CMPM 120

32

CMPM 120

An alternate way to define Phaser's game object
33

CMPM 120

Phaser states have other optional functions you can use
34

CMPM 120

35

Boot Menu Pre-Game Game Game Over

init
preload
create

preload
create
update

init
preload
create
update

init
preload
create
update

shutdown

preload
create
update

shutdown

CMPM 120

36

Main Menu

Game Play

Game Over

 See states01.js

Define Phaser game object

Add states to StateManager

Problem
Currently, there is no
way to move from
state to state

CMPM 120

37
 See states02.js

Solution
Add some simple
input logic.

CMPM 120

38
 See states03.js

Passing Data
We can also use
Phaser's State
Manager to pass
data between states
This helps us keep things from
cluttering up the global scope

https://photonstorm.github.io/phaser-ce/Phaser.StateManager.html#start

https://photonstorm.github.io/phaser-ce/Phaser.StateManager.html#start

CMPM 120

39
 See states03.js

Branching
With states and
variables, we can
make branching
decisions.

https://photonstorm.github.io/phaser-ce/Phaser.StateManager.html#start

♟

https://photonstorm.github.io/phaser-ce/Phaser.StateManager.html#start

40

Resources for Phaser and JavaScript

CMPM 120

https://github.com/photonstorm/phaser-ce
41

https://github.com/photonstorm/phaser-ce

CMPM 120

https://github.com/photonstorm/phaser-examples
42

https://github.com/photonstorm/phaser-examples

CMPM 120

https://codepen.io/collection/AMbZgY/
43

https://codepen.io/collection/AMbZgY/

CMPM 120

https://mozdevs.github.io/html5-games-workshop/e
n/guides/platformer/start-here/

44

https://mozdevs.github.io/html5-games-workshop/en/guides/platformer/start-here/
https://mozdevs.github.io/html5-games-workshop/en/guides/platformer/start-here/

CMPM 120

http://gamedevjsweekly.com/
45

http://gamedevjsweekly.com/

Break

46

What goes into a game?

47

Asset Management

CMPM 120

Game production is a pipeline
48

Game

Concept
art Images

Tilesets
Level

design

Animation

Texture
atlas

Sound
effects

Audio
editing

Voice
ActingWriting

Scripting

Programming

CMPM 120

Assets have to be put into the game

...that is, they need to be loaded before we can use them

➔ This is especially important with a web game, since your assets will be
downloaded by the browser

➔ But it has always been a consideration for most kinds of games

49

CMPM 120

50

ROM: i.e. the ultimate preload

In the before-times, assets were burnt directly into Read Only Memory

CMPM 120

51

Load Menu Pre-Game Game Game Over

...then
load the
rest of

the assets

Boot

Load
minimal
assets,
enough to
start

loading...

CMPM 120

52

Other games might need to load per level, per world, or on the fly

CMPM 120

Phaser requires us to load assets before we can use
them in the game

53

image('cat', 'img/cat.png')

type key url

CMPM 120

Phaser requires us to load assets before we can use
them in the game

54

image('cat', 'img/cat.png')

type key url

Asset Cache (Session Persistent)

image('cat', 'img/cat.png')

image('tree','img/tree.png')

image('egg', 'img/egg.png')

image('dog', 'img/dog.png')

CMPM 120

Phaser requires us to load assets before we can use
them in the game

55

add

image('cat', 'img/cat.png')

image('tree','img/tree.png')

image('egg', 'img/egg.png')

image('dog', 'img/dog.png')

Asset Cache (Session Persistent)

��

CMPM 120

56

Load before adding

Images can be loaded individually or in a batch

Note the use of an array []

CMPM 120

Asset Cache Demo

57

58

What kind of assets can I use?

CMPM 120

https://photonstorm.github.io/phaser-ce/

➔ Learning how to read the documentation is powerful
➔ Programming documentation follows standard conventions

Let's look up the things we suggested:
Slide 48: Q: No, really: What does go into a game?

59

How do we load things into Phaser?

https://photonstorm.github.io/phaser-ce/

CMPM 120

Q: No, really: What does go into a game?

Images

Sounds

UI

Textures

Sprites / Models

Fonts

Story
60

CMPM 120

Asset Types (In Phaser)

61

● Images
○ Sprites
○ Sprite Sheets
○ Texture Atlases
○ Tile Sprites

● Tile Maps
● Audio

○ Audio Sprite
● bitmapFont
● Video
● Shader

● Data
○ XML
○ Text
○ JSON
○ Binary
○ Physics

● Resource Pack
● JavaScript

CMPM 120

Loading Images

Where do you want
to put the image?

Reference name
(you provide this)

62

Where is the file located?

CMPM 120

Sprites

A Sprite is a moveable image

Back in the ancient times, game devices had
specific hardware support for sprites.

They kind of float on top of the background
images.

In Phaser, sprites give us a way to add:

➔ Motion
➔ Physics
➔ Input handling
➔ Events
➔ Animation
➔ Camera culling
➔ Etc.

Most of your on-screen visuals will be
sprites.

63

CMPM 120

Loading Sprites

added as a sprite

Loaded as an image

64

CMPM 120

For web games, mostly .png

➔ Lossless compression
➔ Transparency
➔ Widely supported

In your future career you'll also encounter things like DDS (to store
compressed textures at multiple scales) or EXR (to store High Dynamic
Range image data) but that's less relevant here.

65

Which image format should I use?

CMPM 120

https://www.katsbits.com/tutorials/textures/make-b
etter-textures-correct-size-and-power-of-two.php

66

Images sizes
should be in
powers of 2
Because of the way computers store
things in memory, they will be padded
or stretched to fit, or will otherwise be
slower to load.

8
16
32
64
128
256
512

1024
2048
4096

...
256

210 46

https://www.katsbits.com/tutorials/textures/make-better-textures-correct-size-and-power-of-two.php
https://www.katsbits.com/tutorials/textures/make-better-textures-correct-size-and-power-of-two.php

CMPM 120

Having your assets prepared before loading
will improve speed and use less memory.

67

32 x 73
8 KB

64 x 146
28 KB

150 x 342
144 KB

250 x 570
384 KB

CMPM 120

Uniform grid layout of sprite frame data.

Putting many animations into one image
reduces load time.

68

Sprite Sheets

CMPM 120

Texture Atlas

Non-uniform arrangement of sprite
frame data

➔ Less memory and bandwidth
➔ Each element only drawn once
➔ Not all frames need to be the

same size
➔ Refer to frames by name rather

than index

69

CMPM 120

leshylabs.com/apps/sstool/

70

https://www.leshylabs.com/apps/sstool/

CMPM 120

The texture atlas needs both an image and a JSON data file
71

+ JSON
File

CMPM 120

➔ A file format that is human readable
➔ Built out of…

◆ Attribute/Data pairs
◆ Arrays

➔ Lots of things other than JavaScript can read it
➔ Common for communicating data on the web

{
"attribute": "data",
"also": ["can", "be", "nested"]

}

72

JavaScript Object Notation (JSON)

CMPM 120

73

Tile Sprites

A sprite with a repeating texture that can be
scrolled and scaled independently of the sprite
itself.

Good for seamlessly looping backdrops.
(endless runner, scrolling shooter, etc.)

It's a good idea to match
the dimensions of your
tiled image

CMPM 120

Tile Maps

74

A popular technique in 2D
game development that builds
larger structures using
grid-based elements called
tiles.

Good for fast and memory
efficient world building.

CMPM 120

Tiled
Map Editor

75

https://www.mapeditor.org/

https://www.mapeditor.org/

CMPM 120

Audio

76

All the sound data your game will
need, whether for one-off sound
effects or background music.

Sound adds texture and depth to
your games. Don’t neglect it.

An array of fallback
options

CMPM 120

Audio Sprites

77

A single audio file that can
be split into individual
sound “sprites,” as in a
sprite sheet. Requires a
separate file.

Good for cross-browser
compatibility.

CMPM 120

Endless Runner

Your big individual project will be to
make an endless runner.

It's not officially announced yet, but
I wanted to give you a chance to
start thinking about it.

78

