
Prefabs and Prototypes
CMPM 120

1

Reviewing the First Assignment

2

3

The best time to turn it in is before the deadline

The second best
time is now

CMPM 120

4

phaser

framework projectName

js css assets

audio img

index.html

[local server]

phaser.min.js

main.js styles.js

Rename this!
Phaser in separate

folder

CMPM 120

Collaborating and Community

5

https://xkcd.com/979/
"All long help threads should have a sticky globally-editable post at the top saying

'DEAR PEOPLE FROM THE FUTURE: Here's what we've figured out so far ...'"

https://xkcd.com/979/

CMPM 120

Please help each other!

Getting help from other people is good…

...just cite where the code or ideas came from.

...it can also help if you type the code in
yourself instead of just pasting it.

This is a good idea because it's important to understand what your code is doing.
Code on Stack Overflow can be wrong

6

CMPM 120

Why You Are Here

7

➔ Learn the basic principles of game programming and
put them into practice

➔ Learn how to do the low-level implementation so we
can turn ideas into working games

➔ Learn how technology and teamwork affect game
design (PLO 7 & 8)
Note: Not (directly) testing you on knowing Computer Science concepts! That's what
classes like 12B are for!

CMPM 120

Document your process

If your workflow involves following a particular set of steps, write that down.

This applies to artists too!

8

CMPM 120

Comments

// Slight change in how comments will be graded going
forward

// You're all good at telling me the how

// But I also want to know the why

// If how something works seems obvious to you, less need
for comments -- though it may not be obvious to the rest of
your team.

9

CMPM 120

Literate Programming

// The original literate programming paper

http://www.literateprogramming.com/knuthweb.pdf

10

http://www.literateprogramming.com/knuthweb.pdf

Objects & Prefabs

11

CMPM 120

Learning Objectives

12

By the end of class you should be able to…

➔ Paraphrase what a game prefab is
➔ Explain how to use JavaScript objects to...

◆ ...extend an existing prototype
◆ ...make prefabs and organize your code using prototypes

Homework Assignment #2

➔ Demonstrate organizing a game's files
➔ Implement multiple game states
➔ Practice making your code modular

CMPM 120

What are some reasons to have more than one
file for our games?
● Too much information
● Logical organization
● C++ re-compiles faster
● teamwork!

13

CMPM 120

Game Prefabs

Games are complicated systems, we need organization.

One way this is done is called a prefab.

A prefabricated object - same code and data gets used many times

➔ In Phaser, prefabs are usually:
◆ in-game elements that extend Phaser.Sprite
◆ or related user interface elements that extend Phaser.Group.

14

CMPM 120

A prefab will add properties and methods that make
the extended Phaser object unique

15

Player

Enemy

Phaser.Sprite

CMPM 120

16

Player

Phaser.Sprite

Inherited properties and methods
Prefab properties and

methods

this.jumpHeight
this.runSpeed

etc.

If you have experience with other programming languages

JavaScript does
things a bit
differently

17

CMPM 120

functions()

18

You are probably familiar with grouping code into functions for organization
and reuse.

function addFive(parameter) {
return parameter + 5;

}

In Javascript, functions are a type of object.

return addFive;

CMPM 120

19

CMPM 120

Functions inside functions

function addANumber(a_number) {
var adder = function(parameter) {

return parameter + a_number;
}
return adder;

}

var add_five = addANumber(5);
add_five(10);

20

By the way, this is called a closure.

CMPM 120

Function Scope

21

Variable bindings are only valid in part of the
program.

This region is called the scope.

CMPM 120

let versus var

function exampleFunctionOne() {
let first = 7;

 console.log(first);
 for(let first = 0; first < 5;
first++) {
 console.log(first);
 }
 console.log(first);
}

The let statement declares an enclosing
block scope local variable.

22

function exampleFunctionTwo() {
// hoisting: var second;

 console.log(second);
 for(var second = 0; second < 5;
second++) {
 console.log(second);
 }
 console.log(second);
}

The var statement declares a function scope
variable.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

CMPM 120

Lexical Scope versus Closures

function parent() {
var parent_value = 1;
function child() {

var child_value = 2;
}

}

23

function makeAdder(x) {
 return function(y) {
 return x + y;
 };
}
var add5 = makeAdder(5);
var add10 = makeAdder(10);
console.log(add5(2)); // 7
console.log(add10(2)); // 12

Lexical scope exists in the written code: the
parent_value is accessible in the child
function, but the child_value isn't
accessible in the parent function.

Closures use the run-time context from when
the outer function was called and the inner
function was created.

CMPM 120

Functions are objects, objects have properties

Therefore, functions can have properties.

You'll remember this later.

24

CMPM 120

Arrays

An array is an ordered
set of objects that you
can access by index.

25

CMPM 120

Looping through arrays
var ants_of_california = ["argentine ants", "forelius pruinosus", "bicolored pyramid ant", "odorous
house ant", "ghost ant", "velvety tree ant"];

for(let i = 0; i < ants_of_california.length; i++) {
console.log(ants_of_california[i]);

}

ants_of_california.push("argentine ants");

for(let ant of ants_in_california) {
console.log(ant);

}

26

CMPM 120

Objects

Most things in JavaScript are objects

Objects are arbitrary collections of properties

Properties that are bound to functions are called methods

We can access, reassign, and enumerate an object's properties

27

CMPM 120

28

We can use objects to
organize things in our
game

Using the object values
instead of writing them
explicitly in preload()

CMPM 120

29

Properties can
have functions: we
call this a method

CMPM 120

What if we want multiple, slightly different objects?

30

CMPM 120

31

Share setup by using a
constructor function!

Note the use
of the new
keyword

Where have we seen the
new keyword before?

We can add
methods to

existing objects!

CMPM 120

32

Phaser.Game() is a
constructor function

You've already used
constructor functions!

CMPM 120

33

new & this

Calling a function with the new keyword
causes it to be treated as a constructor.

The constructor will have its this
variable bound to a fresh object.

CMPM 120

this refers to the object the code is inside

34

this.x
this.y

Sprite

this.x
this.y

Emitter

this.x
this.y
Particle

this.x
this.y
Particle

this.x
this.y
Particle

this.x
this.y
Particle

this.width

Game

CMPM 120

Q: Will this one-line program
throw a browser error?

this.greeting = "Hello World";

35

36

Prototypes

CMPM 120

Prototypes

37

You might have noticed
something unexplained
last week:

In our Phaser states
example what is
MainMenu.prototype?

CMPM 120

38

“Every JavaScript object has a second
JavaScript object associated with it. This
second object is known as a prototype,
and the first object inherits properties
from the prototype.”

JavaScript: The Definitive Guide (6E), p. 118

CMPM 120

39

Two prototype concepts

Every JavaScript object has a prototype
attribute that points to its “parent,” i.e., the
object from which it inherited its properties.
This attribute is normally referred to as the
prototype object.

The prototype object is a property of each
instance.

Object.getPrototypeOf(my_object);

Every JavaScript function has a prototype
property that is empty by default. You
implement inheritance by attaching
properties and methods to this property.

The prototype property is a property of the
constructor.

Object.getPrototypeOf(new
ConstructMyObject()) ==
ConstructMyObject.prototype;

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

CMPM 120

40

hasOwnProperty()
isPrototypeOf()

propertyIsEnumerable()
toString()
valueOf()

var playerSprite = {
x: 200,
Y: 200,
src: "dolphin.png"
}

Object.prototype

object literal

Object literals all
have the same
prototype object

All objects created
with { } have
Object.prototype
as their prototype
object

CMPM 120

Editing the Constructor

We know how to add new properties
to existing objects.

But what if we want to add a shared
property to the constructor itself?

41

Creature

swim()

slime_trail()

new
move()

CMPM 120

42

Creature new
move()

move()

move()

swim()

slime_trail()

We add to the
prototype with

.prototype

CMPM 120

43

Creature new
move()

move()

move()

swim()

slime_trail()

You can think of it like
how some cards in

Magic: the Gathering
alter how cards of a
particular type work

Image credit: @roborosewater
https://twitter.com/RoboRosewater/
status/972577767576489984

CMPM 120

.prototype
and Phaser

We use prototypes with
our Phaser states.

How does it work?

44

CMPM 120

Adding States

45

Tell Phaser we want to add an
object that enacts a state, with

the key of 'MainMenu'

Say that we want to start with
the state identified with the key

of 'MainMenu'

CMPM 120

Adding States

46

Phaser looks up the
'MainMenu' key and sees that it

points to a function called
MainMenu()

Note that the game object has
been passed to the function so
we can reference it within the

state

CMPM 120

Adding States

47

Normally, these would be
adding new properties

But because we added
MainMenu to Phaser's

StateManager, Phaser made
MainMenu an instance of its

State object.

CMPM 120

Adding States

48

So now these are
overriding inherited

properties

CMPM 120

Adding States

49

For State methods that you don't override, JavaScript moves up the
prototype chain until it finds them.

Phaser defines all of the State methods you see above, but none of them
have any default behaviors—it's up to you to provide them. 🙂

CMPM 120

Gloom

If it helps, you can
think of this like
the transparent
cards in the game
Gloom, where cards
on top override the
cards underneath.

50

Image credit: Atlas Games
https://www.atlas-games.com/gloom/

https://www.atlas-games.com/gloom/

Constructing a prefab

51

Step by step

Player

Enemy

Phaser.Sprite

CMPM 120

52[player.js]

The prototype should get
its own file

CMPM 120

53[player.js]

The prefab
constructor
function

CMPM 120

54[player.js]

.call()
Call Phaser.Sprite as
if it were a method of

this object

CMPM 120

55

call()

“JavaScript functions are objects and like all JavaScript objects, they have
methods.”

“call() allows you to indirectly invoke a function as if it were a method of
some other object. The first argument is the object on which the function is
to be invoked; this argument becomes the value of the this keyword within
the body of the function.”

“Any arguments to call() after the first invocation context argument are the
values that are passed to the function that is invoked.”

JavaScript: The Definitive Guide, p. 170, 187

CMPM 120

56[player.js]

First
argument

this - i.e.
the Player

object

Other arguments
Player.Sprite()

parameters

CMPM 120

57

Player

Phaser.Sprite

Inherited properties and methods
Prefab properties and

methods

this.jumpHeight
this.runSpeed

etc.

First
argument

this - i.e.
the Player

object

Other arguments
Player.Sprite()

parameters

CMPM 120

58[player.js]

Now we can extend the
default Phaser.Sprite

by adding our own
properties!

Note the use of the
this keyword to refer
to our own object!

CMPM 120

59[player.js]

Here we explicitly
specify the prefab's

prototype &
constructor

CMPM 120

60[player.js]

And we override the
inherited update()

method to add our own
behaviors

CMPM 120

61[main.js]

Back in main.js, we use
our Prefab constructor
to create three new

Player objects

CMPM 120

62[main.js]

Note that we have to
manually add our prefab

objects to Phaser's
display list

CMPM 120

63

How the parameters flow

CMPM 120

64[index.html]

Need to include the
<script> file in

index.html

The order is important!
Note which

file this is

CMPM 120

65

inheritance02.js / Player.js

66

/js

/prefabs

/states

Project
organization

Keeps things
manageable

Helps with
cooperation

main.js

player.js enemy.js

load.js play.js

Programming Homework #2
Snowy States

67

CMPM 120

Snowy States

68

➔ Organization
◆ Comments
◆ File Structure

➔ States and Conditions
◆ Your game should have three states:

MainMenu, Play, and GameOver
◆ Use the state object's .prototype
◆ Add text and additional behaviors, as

described in the assignment
➔ Prefabs

◆ Construct a Snowstorm prefab in a
separate file

◆ Add 100 snowflake objects to the scene
◆ Override the prefab's update method to

allow the player to reverse all of the
snowflakes

http://www.youtube.com/watch?v=KX8BBvYoFY8

