
Optimization & Debugging
CMPM 120

1



But first, your Endless Runner

2



CMPM 120

Organization (2.5 points)

3

Comments Logically comment your source to demonstrate that you 
understand how each section works. (0.5)

Organization Your file structure is organized logically and legibly (0.5)

No Errors Game runs from localhost (0.5) with no code errors (0.5).

Submit Submit your project to Canvas as a .zip that includes the 
framework so the graders can run it. (0.5)

https://canvas.ucsc.edu/courses/26569/assignments/86776

https://canvas.ucsc.edu/courses/26569/assignments/86776


CMPM 120

Structure and Design I

4

3 States Have at least three states: a main menu 
(0.5), a state where you play the actual 
game (0.5), and a game over state (0.5). 
You may name these however you like. 
You may also have more, depending on 
how you structure your game.

Collision 
Detection

Properly use collision detection (0.5).

Instructions Communicate how to play w/ clear 
instructions (0.5).

Background 
Music

Have looping background music (0.5).

State 
Transitions

Properly transition between states and 
allow the player to restart w/out having 
to reload the page (0.5).

Sound Effects Use sound effects for key mechanics 
and/or events (0.5) according to your 
design.

Player Input Have some form of player input/control 
(0.5) according to your design.

Randomness Use randomness to generate challenge, 
e.g. terrain, pickups, etc. (0.5).



CMPM 120

Structure and Design II

5

Animated 
Character

Include an animated character(s) (0.5) 
that use a texture atlas (0.5).

Metric Include some metric of 
accomplishment that a player can 
improve over time, e.g., score (0.5).

Simulate 
Scrolling

Simulate scrolling, e.g., tilesprite (0.5). Endless Be theoretically endless (0.5).

Playable Be playable for at least 15 seconds for a new player of low to moderate skill (0.5).
(DO THE OPPOSITE OF THIS VIDEO: https://www.youtube.com/watch?v=eb60pnjABGg)

https://www.youtube.com/watch?v=eb60pnjABGg


CMPM 120

Creative Tilt (2 points)

6

Technical 
Interest

...do something technically interesting? Are you particularly proud 
of a programming technique you implemented? Did you look 
beyond the class examples and learn how to do something new? (1)

Visual Style ...have a great visual style? Does it use music or art that you 
created? Are you trying something new or clever with the endless 
runner form? (1)

Does your game...



CMPM 120

Game 
Development 
Crimes

https://twitter.com/fullbrigh
t/status/107362481110701670
4 

7

https://twitter.com/fullbright/status/1073624811107016704
https://twitter.com/fullbright/status/1073624811107016704
https://twitter.com/fullbright/status/1073624811107016704


CMPM 120

8

Definitely 
don't do 

these



CMPM 120

9

WONTFIX



CMPM 120

10

Some sims need warm-up time



CMPM 120

11



Don't (deliberately) do crimes

But games aren't realistic 
simulations and sometimes 
you just hack in a solution 
and go work on other 
things instead

12



CMPM 120

Game Physics are not real physics

https://twitter.com/AIandGames/status/1149999152551604224 

13

https://twitter.com/AIandGames/status/1149999152551604224


Optimization:

Finding ways for 
the computer to 
do less work

14



Frames

15

One second

Thirty frames per second:
~33.33 milliseconds per frame

Sixty frames per second:
~16.67 milliseconds per frame



Frame Budget

16

One frame

updateLogic Render

collision particles sprites

event



CMPM 120

17

Profiling

Luckily for us, browsers have 
built-in profiling tools



CMPM 120

18

Profiling

We can drill down and see 
how many microseconds 
each operation is taking.

ms = millisecond = 
1/1000th

µs = microsecond = 
1/1,000,000th



CMPM 120

19

“"We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root of all 
evil. Yet we should not pass up our 
opportunities in that critical 3%”

"Structured Programming with go to Statements," Donald Knuth, p. 268

https://pic.plover.com/knuth-GOTO.pdf


How to do less 
work

Make the calculations cheaper

Make the inner loop faster

Do fewer calculations

Don't run everything every frame

20

But first check to see if what 
you are doing even matters



Debugging

21



CMPM 120

Useful random debugging advice

22

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

23

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

24

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

25

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

26

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

AABB characters and slopes

An example of a real-world 
physics-and-debugging problem in a game 

with 2D physics like yours
https://twitter.com/eevee/status/1133248372624613376 

27

https://twitter.com/eevee/status/1133248372624613376

