D@GGING

Every progammer
Mmaeks mistakes

when they code.

Part of being a
petter programmer
IS learning how to

find and fix your
Mistakes.

WEEKLY WORLD

THE COMPII'I'|ER CRASH OF THE

September 15, 1998 $1.39 U.S. $1.59 CANADA/70p U.K.

— ———awm el ALL BANKS WILL FAIL!
‘Flaws in programs are usually called bugs. = T = dé’“ . FOOD SUPPLIES
Bugs can be programmer errors or problems . ik WILL BE DEPLETED!
in other systems that the program interacts e :,,5,. - ‘ ELECTRICITY
with. Some bugs are immediately apparent, i . ¥ B WILL BE CUT OFF!
while others are subtle and might remain V) _ &1 = x % THE STOCK MARKET
hidden in a system for years.” pEma— P 19" WILL CRASH!

2 | Be SN0 B -N Bl VEHICLES USING
Eloquent JavaScript (2E), p.139 5 NI I 5 Bl - Bl COMPUTER CHIPS
; : 3 £ . - ‘ :’E ’ i = ') - ::';.: .; ; 3 .

=" DOMINO EFFECT WILL CA usr
" 1 WORLDWIDE
" DEPRESSION!

[Wikipedia entry on the Y2K bug]

https://en.wikipedia.org/wiki/Year_2000_problem

“The first step is an intuition, and comes
with a burst, then difficulties arise—this
thing gives out and it is then that ‘Bugs’—
as such little faults and difficulties are
called—show themselves and months of
intense watching, study, and labor are
requisite before commercial success or
failure is certainly reached.”

— Thomas Edison, game programmer, in 1878

UEBUGGING IS SEARCHING FOR
(AND FIXING) ERRORS IN CODE.

Bugs happen because humans make
mistakes, software is complex, and
computers do exactly what you tell
them to do—even when what you tell
them is to do is incorrect.

Wi ld MISSINGNO., |
lappeared? (But bugs can also be fun, interesting, and useful.)

 HERE ARE SOME DEBUGGING
TIPS AND BEST PRACTICES I'VE
~ LEARNED OVER THE YEARS.

JEBUGGING TIP #1

UNDERSTAND YOUR TOOLS. THEN USE THEM.

HOW DO YOU DETECT
AND DIAGNOSE A CAR
PROBLEM “BEFORE™ IT
LEAVES YOU STRANDED?

@ 4 Return MaZDa CX' Web Owner’s Manual

ma~<bpa
REAR

‘ i Read this first ’

‘ % Quick Guide ’

@ Visual Search
@ Search by Theme () @l & () @ A:\‘jz AT A4WD (7!') u.m |-St0p o0s

0, nas w BB O Y B =2 O S e @ = T

- TGS B, S %
@ oo DPF Qi ee OFF °"°RT OFFM® OFF 0?

111
>/

&0
e
i),

@ Mazda Connect REAR i u.m |_St0p _:O 0:_ io . ’ Q“ HOLD

@ FAQ
(Frequently Asked Questions)

1
X

LIM &)

View PDF format
-~ =2 B F O G v &

Your car’'s dashboard is designed to be an early warning system.

Engine Oil Warning
Light

This warning light indicates low engine oil pressure.

/\ CAUTION

Do not run the engine if the oil pressure is low. Otherwise, it
could result in extensive engine damage.

Close Caution

If the light illuminates or the warning indication is displayed while
driving:
1. Drive to the side of the road and park off the right-of-way on
level ground.
2. Turn off the engine and wait 5 minutes for the oil to drain back
into the sump.
3. Inspect the engine oil level. (Search) If it's low, add the
appropriate amount of engine oil while being careful not to
overfill.

/N CAUTION
Do not run the engine if the oil level is low. Otherwise, it
could result in extensive engine damage.

Close Caution

4, Start the engine and check the warning light.

If the light remains illuminated even though the oil level is normal
or after adding oil, stop the engine immediately and have your
vehicle towed to an expert repairer, we recommend an Authorised
Mazda Repairer.

The car’s diagnostic tools (e.g., warning

lights) provides symbolic messages that
the operator uses to reference
information in the owner’'s manual. This
information can be specific instructions,
precautionary measures, or warnings.

MOST MATURE PROGRAMMING
ENVIRONMENTS HAVE SOME

MANNER OF DIAGNOSTIC
TOOLS TO HELP YOU DEBUG.

< C 10 | @® localhost:8000/15%20-%20Debugging/

(x 0]

I O
ni.i o
ni.i 1
ni.i 2
ni.i 3
ni.z o
hi.z 1
hi.z 2
ni.z 3
ni.x @
ni.x 1
ni.x 2
ni.x 3
ni.y 0
hi.y 1
ni.y 2
ni.y 3

Elements

top

Console

v

Sources

Filter

Network

Performance Memory

Default levels ¥

Application

Group similar

Security

Audits

debug®l.js:4

debug®l.js:4

debug®l.js:4

debug®l.js:4
debug®l.js:8

debug®l.]s:8

debug®l.js:8
debug®l.js:8
debug@l.js:14

debug@l.js:14
debug@l.js:14

debug@l.js:14

debug@l.js:20

debug@l.)s:20

debug@l.js:20

debug®l.js:20

X
o

JavaScript is native to the web, so we can use the
(really excellent) tools that are available in our web

browser of choice.

[This is debugO01 js, if you need to see it.]

E'RY MAJOR BROWSER GOT A JS CONSOLE

FIRFAX

ee ry Applicatlon » E X X r\D E |>. |l| I:’ 52 o 5 '-‘. S G lnspector Conso e D Debugger { } Style Editor))
ilter v imi o B
T3 Elements (D Networ k | [) Resour.. @ Timelin.. {T} Debug.. = & Storage | [a] Canvas W ¥ Filteroutput
P g [Errors W

Access them with Command+Option+I (Mac) or Control+Shift+I (Windows, Linux)

trashcan = false x [] + "burrito"

Bad news: JavaScript has a unique set of “challenges” when it comes to debugging

(x ﬂ Elements Console Sources Network Performance » . X

trashcan = false x [] + "burrito"

X © @ top Y | Filter Default levels ¥) Group similar <
console. log(trashcan) onurrita sebuogt. 1:3
console. log(typeof(trashcan)) o =

JavaScript will happily construct and output a delicious “@burrito.”

"use strict":

trashcan = false % [] + "burrito"

console. log(trashcan)

console. log(typeof(trashcan))

© vUncaught ReferenceError: trashcan is not defined
at debug@7.j)s:3

(anonymous) @ debug®7.js:3

debug®7.js:3

“JavaScript can be made a *little® more strict
by enabling strict mode. This is done by
putting the string “use strict” at the top of

a file or a function bodly..

Putting a “use strict” at the top of your

program rarely hurts and might help you
spot a problem.”

Eloquent JavaScript (2E), p.140-1

[More info on strict mode at MDN]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

JEBUGGING TIP #2

IF YOU HAVE AN ERROR—-STOP. FIX IT BEFORE MOVING ON.

Source: KC Green

http://gunshowcomic.com/648

JEBUGGING TIP # 3

YOUR ERROR IS OFTEN THE SIMPLEST POSSIBLE THING.

Hi, I'm a semicolon. You know,
that weird punctuation that
you're not really sure how to use
INn everyday writing.

Turns out I'm pretty important in
(strict) JavaScript. | should end

every program statement.

1 var numPlayers = 2
2
3 var player = {
WITH DUR NEW 4 class: 'Pirate Wizard',
5 health: 90,
6 spell ['Fireball', 'Lightning Bolt', 'Summon Plank'],
SEMIBDLDN FRIEND 7 ship: 'Magic Galleon'’,
8 momsName: 'Catherine’
9 }
IN MIND, HOW MANY =
11 . Log(numPlayers)

ERRDRS W"-I. THIS g . Log(player)

14 if(player-héélth > ‘?){'
CODE GENERATE? 15| console. log(player. class)

[see debug02.js] 18 ;33

SURPRISE! AUTOMATIC SEMICOLON
INSERTION IS A THING.

[see JavaScript Semicolon Insertion for *detailed* technical info]

JavaScript Semicolon Insertion
Everything you need to know

Friday, May 28, 2010

Automatic semicolon insertion is one of JavaScript's most controversial syntactic features. There are also many misconceptions
surrounding it.

Some JavaScript programmers use semicolons at the end of every statement, and some use them only where strictly required.
Most do something in between, and a few even intentionally add extra semicolons as a matter of style.

Even if you use semicolons at the end of every statement, some constructs parse in non-obvious ways. Regardless of your
preferences in semicolon usage, you must know the rules to write JavaScript professionally. If you remember a few simple rules,
all of which are explained here, you will be able to understand how any program you might encounter will be parsed, and will be
an expert on JavaScript automatic semicolon insertion, or ASI.

http://inimino.org/~inimino/blog/javascript_semicolons

REMEMBER 10 CHECK FOR
SMALL ERRORS FIRST:
SPELLING, CAPITALIZATION, PATH
NAMES, PUNCTUATION, ETC.

UEBUGGING TIP # 4

LEARN YOUR DEBUGGER'S DIALECT.

® Uncaught ReferenceError: Invalid left-hand side in assignment debug@3.]s:22

Let’s start with a common example: What does this error message mean?

The Error Object

JavaScript has a built in error object that provides error information when an error occurs.

The error object provides two useful properties: name and message.

Error Object Properties

Property Description

name Sets or returns an error name
message Sets or returns an error message (a string)
u Error Name Values

Six different values can be returned by the error name property:

Error Name Description

EvalError An error has occurred in the eval() function
RangeError A number "out of range" has occurred
ReferenceError An illegal reference has occurred
SyntaxError A syntax error has occurred

TypeError A type error has occurred

URIError An error in encodeURI() has occurred

Source: w3schools

https://www.w3schools.com/js/js_errors.asp

Error Object name

@ Uncaught ReferenceError

Error Object name

@ Uncaught ReferenceError

This error was not caught in a

catch statement.

WHAT IS A CATCH STATEMENT?

// test input field value for errors, and throw custom

messages
try {
if(x =="") throw "is empty";
if(isNaN(x)) throw "is not a number";

)
= Number(x):
X > 10) throw "is too high";

X < 5) throw "is too low";
}
THRDWS AN ERRDR YDU // execute if an error is caught
y

catch(err) {

message.innerHTML = "Input " + x + " " + err;
}
WANT TO TRY AND CATCH IT. 1) Clear input Fietd value after try/eateh xecute
finally A

document.getElementById("demo").value = "NOM NOM";
}

[Let's load up debug03.html]

¢ Syntax

try {
try statements

}
[catch (exception var 1 if condition_1) { // non-standard
catch_statements_1

}H

[catch (exception var 2) {
catch_statements 2

}]
[finally {

finally statements

}H

try_statements
The statements to be executed.

catch_statements_1, catch_statements_2
Statements that are executed if an exception is thrown in the try block.

exception_var_1, exception_var_2
An identifier to hold an exception object for the associated catch clause.

condition_1
A conditional expression.

finally statements

Statements that are executed after the try statement completes. These statements
execute regardless of whether an exception was thrown or caught.

As usual, Mozilla Developer Network
has an excellent breakdown of the

try..catch syntax with descriptions
and examples.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch

Error Object name

@ Uncaught ReferenceError

This error was not caught in a Your code has referenced (i.e., tried to use) a variable
catch statement. that doesn’t exist. You either need to declare the
variable, or make sure it's in the proper scope.

Error Object message

Invalid left-hand side 1n assignment

Error Object message

Invalid left-hand side 1n assignment

You did a bad. Where you did a bad. What kind of bad you did.

Console error bonus info

debugf3.]s:22

File Line

Note the underline—clicking this will magically transport you to your error.

BEHOLD THE
ERROR THOU

HAST SOUGHT.

1

"

2

LOoOSNSNOOULLEWNM-

] | Elements Console Sources

debug03.js X » [v]]

// A Few Baslic Debugging Exerclses
J// Comment/Uncomment each Problem setl

// Problem 1
//score;

// Problem 2

// function defineltem() {

// var item = “Infinity Gauntlet";
/] }

// defineItem();
// console.log(item);

// Problem 3

// for(let 1 = @; 1 > 5; i++) {
// console.log(1);

/] }

// Problem 4
function checkIfEven(num) {
if(hum % 2 = 0) {©
return true;

}

return false;

}

console. log(checkIfEven(16));
console. log(checkIfEven(33));
console. log(checkIfEven(1000));

Network Performance Memory »

" vo O
» Watch
v Call Stack
Not paused
v Scope
Not paused

v Breakpoints
No breakpoints

» XHR/fetch Breakpoints
» DOM Breakpoints
» Global Listeners

» Event Listener Breakpoints

01

® Uncaught ReferenceError: Invalid left-hand side in assignment debug@3.]s:22

Summary: there’s a lot of info packed into this cryptic string of words and numbers.

JEBUGGING TIP #3

LEAVE BREADCRUMBS TO FOLLOW.

WE USE THIS CONSOLE

-log(error message'); LOG METHOD A LOT, BUT

HOW DO WE USE IT?

1 // Debugging example from Eloquent JS (2E) p. 143

2 // As written, function contains a bug

3 // Scroll below to see solution : :

A This example program tries to convert a

5 function numberToString(n, base) { whole number to a string in any base (e.g.,

6 var result = "", sign = "",; , , ,

7 if (n<0) { decimal, binary, etc.) by repeatedly putting
g rs]lgn_;_"‘"; the number’s last digit in a string then

10 } dividing the number by the base to remove
11 do 1 . diai

12 result = String(n % base) + result; Its last digit.

13 n /= base;

14 } while (n > 0); .

15 Let’s look at this step-by-step then check

1 ' 1t; .

19 y return sign + resu the output of the program (as written).

18

19 console. log(numberToString(13, 10));

‘ 5 function numberToString(n, base) {

6 var result = "", sign = "";
7 if (n <0) {

8 Sign — u_n;

9 n = —-n;

10 s

11 do {

12 result = String(n % base) + result;
13 n /= base;

14 y while (n > 0);

15

16 return sign + result;

17 }

18

19 console.log(numberToString(13, 10));

Most of the program is a single function that
accepts two parameters: the whole number
we want to convert to a string and the
desired base of that number.

For example, numberToString (246, 2)
should return the binary value of 246 as a
string, I.e.,, “11110110”

So our sample input (13, 10) should simply
output: “13”

5 function numberToString(n, base) {

‘ 6 var result = "", sign = "";
7 if (n<0) {
8 sign = "-";
9 n = —-n;
%? 50 (First, we're initializing two empty string
12 result = String(n % base) + result; variables to store and return the function’s
13 n /= base; final
14 y while (n > 0); Inal output.
15
16 return sign + result;
17 }
18

19 console.log(numberToString(13, 10));

5 function numberToString(n, base) {

6 var result = "", sign = "";

7 if (n <0) {

8 sign = "-";
18 \ = The if statement checks to see if our whole
11 do { number is negative. If so, it stores the string
12 result = String(n % base) + result; cc oy - : :
13 n /= base: - in the sign variable, then converts our
%g r while (n > 0); number to a positive by flipping the sign.
16 return sign + result;
17 }

18
19 console.log(numberToString(13, 10));

function numberToString(n, base) {

var result = "", sign = "";
if (n <0) {
Sign — II_II;
n =-n; : .
y The do-while loop is where most of the
do 1 | function’s work is done. It will perform the
result = String(n % base) + result; . , o
n /= base: two inner statements until our original

r while (n > 0); number (stored in n) is O or less.

return sign + result;

}

19 console.log(numberToString(13, 10));

5 function numberToString(n, base) {

6 var result = "", sign = ""; , ,

7 if (n<0) { ’ This statement takes the remainder of n

g ;‘;12”_;; T divided by base, converts it to type String,

%? C}]O) then concatenates it to the contents of
‘12 result = String(n % base) + result; results (which, the first time through the

13 n /= base; . :

14 Y while (n > 0): loop, will be an empty string “”).

15

16 return sign + result;

i; + What should the remainder of 13 /10 be?

19 console.log(numberToString(13, 10));

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Remainder_()

function numberToString(n, base) {

var result = "", sign = "";
if (n <0) {
,5112”_;- o We then assign n to the result of n divided
50 q by the base parameter.
result = String(n % base) + result;
n /= base; | | |
} while (n > 0); After the first do, will the while loop loop

- ,]
return sign + result; again? And what's the current value of n”

}

19 console.log(numberToString(13, 10));

5 function numberToString(n, base) {
6 var result = "", sign = "";
7 if (n <0) {
8 Sign — n_u;
9 n = —-n;
10 s
11 do {
12 result = String(n % base) + result;
13 n /= base;
14 y while (n > 0);
15
’16 return sign + result;
17 }
18

19 console.log(numberToString(13, 10));

Once our loop is finished, we want to return
the requested string, which is a
concatenation of sign and result.

5 function numberToString(n, base) {
6 var result = "", sign = "";

7 if (n <0) {

8 Sign — u_u;

9 n = -n;

10 }

11 do {

12 result = String(n % base) + result; What's the final output to the console?
13 n /= base,;

14 + while (n > 0);

15

16 return sign + result;

17 }

18
‘ 19 console. log(numberToString(13, 10));

(x ﬂ Elements Console Sources Network Performance Memory Application Security » :

M © top Y | Filter Default levels ¥ [Group similar

1.5e-3231.3e-3221.3e-3211.3e-3201.3e-3191.3e-3181.3e-3171.3e-3161.3e-3151.3e-3141. 3e-3131. 3e~ debug®7.js:19
3121.3e-3111.3e-3101.3e-3091.299999999999999e~-3081.299999999999999e~-3071.29999999999999%e~
3061.299999999999999e~-3051.299999999999999e~-3041.299999999999999%9e~-3031.29999999999999%e~
3021.299999999999999e~-3011.2999999999999992e~-3001. 2999999999999992e~2991.299999999999999%e~
2981.2999999999999992e-2971.2999999999999992e~2961.2999999999999993e-2951. 2999999999999993 e~
2941.2999999999999993e-2931.2999999999999994e-2921.2999999999999994e~-2911. 299999999999999%4 e~
2901.2999999999999995e-2891.2999999999999996e~2881.2999999999999995e~-2871.2999999999999995e~
2861.2999999999999995e~-2851.2999999999999996e~2841.2999999999999996e-2831.2999999999999997e~
2821.2999999999999997e~-2811.2999999999999997e~2801.2999999999999997e~-2791.299999999999999%6e~
2781.2999999999999996e~-2771.2999999999999997e~2761.2999999999999998e~-2751.2999999999999990%e~2741. 3e~
2731.3e-2721.3e-2711.3e-2701.3e-2691.3e-2681.3e-2671.3e~-2661.3e-2651.3e-2641.3000000000000002e~
2631.3000000000000002e~-2621.3000000000000003e~-2611.3000000000000003c-2601.3000000000000003e~
2591.3000000000000003e~2581.3000000000000004e~-2571.3000000000000003e-2561.3000000000000003e~
2551.3000000000000003e-2541.30000000000000042-2531.3000000000000004e-2521.3000000000000003 e~
2511.3000000000000003e-2501.3000000000000004e-2491.3000000000000004c-2481.3000000000000005e~
2471.30000000000000040-2461.3000000000000004e~-2451.3000000000000004e-2441.3000000000000004¢e~
2431.3000000000000005e-2421.3000000000000005e-2411.3000000000000005e-2401.3000000000000004e~
2391.30000000000000042-2381.3000000000000004e~-2371.3000000000000005-2361.3000000000000005e~
2351.3000000000000005e-2341.3000000000000006e~-2331.3000000000000005-2321.3000000000000006e~
2311.3000000000000005e-2301.30000000000000062-2291.3000000000000006e-2281.3000000000000005e~
2271.3000000000000005e-2261.3000000000000005e-2251.3000000000000006e-2241.3000000000000006e~
2231.3000000000000005e-2221.3000000000000006e-2211.3000000000000006-2201.3000000000000006e~
2191.3000000000000007e-2181.3000000000000008e-2171.3000000000000007e-2161.3000000000000008e~
2151.3000000000000008e-2141.3000000000000007e~-2131.3000000000000008e-2121.300000000000000%e~
2111.3000000000000008e-2101.3000000000000007e-2091.3000000000000007c-2081.3000000000000008e~
2071.3000000000000009e-2061.3000000000000008e-2051.3000000000000008e-2041.3000000000000007 e~
2031.3000000000000007e-2021.3000000000000006e-2011.3000000000000007c-2001.3000000000000007~
1991.3000000000000008e-1981.3000000000000008e~1971.3000000000000008ec-1961.3000000000000008e~
1951.3000000000000008e-1941.3000000000000008e-1931.30000000000000072-1921.3000000000000007 e~
1911.3000000000000006e-19901.3000000000000007e-1891.3000000000000007c-1881.3000000000000007~
1871.3000000000000008e-1861.3000000000000007e~1851.3000000000000007e-1841.3000000000000006e~
1831.3000000000000005e~-1821.3000000000000005e-1811.30000000000000062-1801.3000000000000005e~
1791.3000000000000005e-1781.3000000000000005e~1771.3000000000000005e-1761.3000000000000006e~
1751.3000000000000006e-1741.3000000000000006e~1731.3000000000000005e~-1721.3000000000000005e~
1711.3000000000000004e-1701.3000000000000005e-1691.3000000000000005e-1681.3000000000000005e~
1671.3000000000000005e-1661.3000000000000005e~1651.3000000000000005-1641.3000000000000005e~
1631.3000000000000005e-1621.3000000000000006e-1611.3000000000000006c-1601.3000000000000007~
1591.3000000000000006e-1581.3000000000000006e~1571.3000000000000006e~-1561.3000000000000007 e~
1551.3000000000000007e-1541.3000000000000006e~1531.3000000000000007e-1521.3000000000000007~
1511.3000000000000007e~-1501.3000000000000006e-1491.3000000000000006-1481.3000000000000005e~
1471.3000000000000004e-1461.3000000000000003e~1451.30000000000000032-1441.3000000000000004e~
1431.3000000000000003e-1421.3000000000000003e~-1411.3000000000000004c-1401.3000000000000005e~
1391.3000000000000004e-1381.3000000000000005e~1371.3000000000000006e-1361.3000000000000006e~
1351.3000000000000006e-1341.3000000000000006e~1331.30000000000000052-1321.3000000000000005e~
1311.3000000000000004e-1301.3000000000000004e-1291.3000000000000004e-1281.3000000000000004e~
1271.3000000000000003e-1261.3000000000000003e~1251.3000000000000004e-1241.3000000000000005e~
1231.3000000000000004e-1221.3000000000000004e-1211.30000000000000042-1201.3000000000000003e~
1191.3000000000000002e-1181.3000000000000003e~1171.3000000000000003ec-1161.3000000000000002e~
1151.3000000000000002e-1141.3000000000000002e~1131.3000000000000002e-1121.3000000000000001e~
1111.3000000000000001e-1101.3000000000000002e-1091.3000000000000001e-1081.3e~-1071.3e~1061.3e~-1051.3e~
1041.3e-1031.3e-1021.2999999999999999¢e~1011.3e~-1001.3e-991.3e-981.3e-971.3e-961.3e-951.3e-941.3e-931. 3e~
921.3e-911.3e-901.3000000000000001e-891.3e~-881.3e~-871.3e~-861.3e~-851.3e~-841.3e-831.3e-821.3e-811.3e~
801.3000000000000001e~791.3e~781.3e~771.3e~761.3e~-751.3e~741.3e~731.3e~-721.3e~-711.2999999999999998e~
701.2999999999999998e~-691.3e~-681.3e~671.3e-661.3e-651.3e-641.3e-631.3e-621.2999999999999999¢e~-611. 3e~
©01.2999999999999998e~591.2999999999999999e~-581.3e~571.3e~561.3e~-551.3e~541.3e~531.3e~521.3e~511. 3e~
501.3000000000000002e-491.3000000000000001e-481.3e~471.3e~-461.3000000000000001e-451.3000000000000002¢e~
441.3000000000000002e~-431.3000000000000002e-421.3000000000000002¢-411.3000000000000003e~
401.3000000000000003e~391.30000000000000032-381.3000000000000003e-371.3000000000000004e~
361.3000000000000003e~351.3000000000000002e-341.3000000000000001e-331.3000000000000001 e~
321.3000000000000002e~311.3000000000000001e~301.3e~-291.3e~-281.3e~-271.3e~-261.3e-251.3e~-241.3e~-231. 3e~
221.299999999999999%e-211.2999999999999998e-201.2999999999999998e~-191.2999999999999998e~
181.299999999999999%e~171.3e~161.3e~151.3e~141.3e~131.3000000000000001e~-121.3000000000000002¢e~
111.3000000000000002e~101.3e~-91.3e-81.3e~
70.00000130.0000130000000000000010.000130000000000000020.00130000000000000020.0130000000000000010.131.33

> |

X
B

Well then.

Despite showing no errors, we clearly have
an unintended bug in our function.

5 function numberToString(n, base) {

g ‘(c;i"("esuét)={""» sign = "%; This is the point where you stop and think
1 n <

8 sign = "-": about where you can strategically add

18 } ="M breadcrumbs (i.e., console.log statements) to

11 do { help you track down your bug.

12 result = String(n % base) + result;

13 n /= base;

%g r while (n > 0); Where would you add them?

16 return sign + result;

17 } .

18 Let’s look at debug04 js

19 console.log(numberToString(13, 10));

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

/ Fkkskokkokskokokskokkkok sk kok skok sk ok ok kok kk

FIXED PROGRAM
skokskokokokokskokskokokokokokokokokokkokokokkkokok /
function numberToString(n, base) {

var result = "", sign = "";
if (n<0) A
Sign — ||_||;
n = -n;
s
console.log('n before while: ' + n);
do {
result = String(n % base) + result;
n = Math.floor(n / base);
console.log('n in while: ' + n);
} while (n > 0);
return sign + result;
s
console. log(numberToString(13, 10));

console. log(numberToString (246, 2));

The console revealed that our problem was
the n /= base; statement, because it was

outputting floats instead of whole numbers.

Math.floor() was the solution. &

(Math.floor returns the largest integer less than or equal to a given
number. Via MDN.)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/floor

Also remember that we've been using this

breadcrumb techni

| like to drop conso

gue throughout the quarter.
e.log() messages in most

state methods (but not update), so | always
know where | am in my game.

// Simple 3-State Game Architecture

// define game
var game

// define MainMenu state and methods
var MainMenu = function(game) {};
MainMenu.prototype = {
preload: function() {
console. log('MainMenu: preload');
by
create: function() {
console. log('MainMenu: create');
by

update: function() {
// main menu logic
}

}

// define GamePlay state and methods
var GamePlay = function(game) {};
GamePlay.prototype = {
preload: function() {
console. log('GamePlay: preload');
}

create: function() {
console. log('GamePlay: create');
Fy

update: function() {
// GamePlay logic
¥

new Phaser.Game(800, 600, Phaser.AUTO,

'phaser');

MORE TO CONSOLE
THAN JUST LOGS()

(Reference: “Diagnose and Log to Console”)

GUESS WHAT? THERE'S

OCoOoONOULTESE WN =

// different ways to output to console
"use strict";

var dinosaurName = "Captain Platypus";
var frogName = "Lieutenant Hops";

var frogJump = 4.67;

var frogAge = 2;

var catName ""James Tailor";

var batName = "Flapjacks";

var hasMazda = true, hasPorsche = false;

// concatenation
console. log('My dinosaur name is

+ dinosaurName);

// string substitution

console.log('My cat name is', catName);

console. log('My frog name is %s it is %i years old and jumps %f
meters high', frogName, frogAge, frogJump);

// output with CSS formatting (%c)
console. log('%scHave you heard about about my bat %s?',
color:#FACADE; font-size:20px', batName);

// error() and warn() methods to draw attention to the errors
console.error('We now have an ERROR');
console.warn('0OK chill, it\'s just a warning');

[Let’s step inside the mind of debug05.js]

https://developers.google.com/web/tools/chrome-devtools/console/console-write

Also note that there are slight
variances in console styles
across browsers. Safari, for
instance, uses a sans serif font
versus monospace variants in
Firefox and Chrome.

Sources Network Performance

x @]
M © top Y | Filter

My dinosaur name is Captain Platypus

Elements Console

Default levels ¥

My cat name is James Tailor

Memory »

Group similar

My frog name is Lieutenant Hops it is 2 years old and jumps 4.67 meters high

© »VWe now have an ERROR
»OK chill, it's just a warning
© » Assertion failed: I'm afraid you don't have a Porsche

B

Checking 4 items in pets array
Captain Platypus
Lieutenant Hops
James Tailor

Flapjacks
» Checking 4 items in pets array (w/ logs collapsed)

0241 :

debug@8.)s:13
debug®8.)s:16
debug@8.)s:17
debug@8.)s:20

debug@8.)s:23
debug@8.)s:24
debug@8.)s:28
debug88.js:32
debug@8.)s:34
debug@8.)s:34
debug@8.)s:34
debug@8.)s:34

debugf8.js:40

H o+ X

| Persist Logs

@ {1} Inspector
W Filter output

My dinosaur name 1is Captain Platypus

] Console (© Debugger »

debug®8.js:13:1
debug@8.js:16:1

My frog name is Lieutenant Hops it is 2 years old debug®8.js:17:1
and jumps 4.670000 meters high

My cat name is James Tailor

debug@8.js:20:1

A b We now have an ERROR
» OK chill, it's just a warning

debuq®8. js:23:1
debug®8. js:24:1

A Assertion failed: I'm afraid you don't have a debug@8.js:28:1
Porsche
Checking 4 items in pets array debug®8.js:32:1
Captain Platypus debuq®8.js:34:2
Lieutenant Hops debug®8.js:34:2
James Tailor debug@8.js:34:2
Flapjacks debug@8.js:34:2
Checking 4 items in pets array (w/ logs debug®8.js5:40:1

collapsed)

Chrome

Console cleared at 5:48:14 PM
My dinosaur name is Captain Platypus

My cat name is - "James Tailor"
My frog name is Lieutenant Hops it is 2 years old and jumps 4.670000 meters high

© » We now have an ERROR
OK chill, it's just a warning
© » Assertion Failed: I'm afraid you don't have a Porsche
v Checking 4 items in pets array
Captain Platypus
Lieutenant Hops
James Tailor
Flapjacks
» Checking 4 items in pets array (w/ logs collapsed)

>

Global Code
Global Code
Global Code
Global Code

Global Code
Global Code
Global Code
Global Code
Global Code
Global Code
Global Code
Global Code
Global Code

debug08.js:13
debug08.js:16
debug08.js:17
debug08.js:20

debug(08.js:23
debug08.js:24
debug08.)s:28
debug08.)s:32
debug08.js:34
debug08.js:34
debug08.js:34
debug08.js:34
debug08.js:40

Firefox

Safari

Logpoints are a brand new
feature in Chrome DevTools!

Logpoints

™

Use Logpoints to log messages to the Console without cluttering up your code with

console.log() calls.

To add a logpoint:

1. Right-click the line number where you want to add the Logpoint.

® 0] Elements Console

Page Filesystem »

v [] top
v) todomvec.com

v [examples/react

v iluijs
todoModel.js
utils.js

» [node_modules

v B examples/react/js
app.jsx
footer.jsx
todoltem.jsx

3 (index)

» () www.google-analytics.com

Sources Network Performance Memory Application » A 1

[[«] todoModel.js app.jsx X

“ e FETTTCTOTTTOD Ve v M- eew ’

14 var TodoFooter = app.TodoFooter;

15 var TodoItem = app.TodolItem;

17 var ENTER_KEY = 13;

19 » var TodoApp = React.createClass({..});

17 Add breakpoint
- Add conditional breakpoint...

i Add logpoint... S

lodel('react-todos');

17 Never pause here odel}/>,

17 ntsByClassName('todoapp') [0]
%E Blackbox script

15 Speech >

183 ! renaert();

185 HQO;

https://developers.google.com/web/updates/2019/01/devtools

JEBUGGING TIP #06

UNDERSTAND BREAKPOINTS AND STEPPING.

xo & N EH ¢

@ [[> Debugger Paused

T3 Elements ‘ @ Network

‘ D Resources ’ @ Timelines ‘ m Debugger ’

hiLoops — debug01.js:5

v

O Q~ Searc

g Storage

‘ [a] canvas ‘ Console

+l®

» 0> 4 L 2L

[] < > i debug0ljs
1 function hilLoops() {

1 @@l

Scope Chain Resource

¥ Pause Reason)) ¥ Watch Expressions + ¥ &
[[7] Triggered Breakpoint [] 3 // show variable outputs with for/while loops Ne Watch Expressions
¥ Call Stack ;[; for (var i = @; i < 4; i++) { ¥ Local Variables
} [hiLoops — debug01.js:5 console.log("ni.i " + 1); (@] i: undefined
[B Global Code — debug01.js:27 g » | ° this: Window {document: #document, NaN: N
. B for (var z = 0; z < 4; z++) { [@) z: undefined
¥ Breakpoints 10 console.log("hi.z " + z); D T e
All Exceptions o (@] y: undefined
Uncaught Exceptions 1 let x = 0; » Global Variables
Assertlon Failures : while (x < 4) {
¥V i debug01.js 16 console.log("hi.x " + x);
Line 9 » . } X+t
Line 20 | 3 19
; D lety=o0;
Line 27 B 70T uhite (y < 4) {
» DOM Breakpoints 22 console.log("hi.y " + y);
23 y++;
» XHR Breakpoints 24 i }

¥ Sources

w I hiloops();

content_messages_server.js — com.kwizzu.fas...

A
v

15 - Debugging — localhost

content_messages.js — com.kwizzu.fastesttub...
content.js — com.kwizzu.fastesttube-srv36c8...
debug01.js

deferred.js — com.kwizzu.fastesttube-srv36c...
downloads.js — com.kwizzu.fastesttube-srv3...
event_listener_common.js — com.kwizzu.faste...
event_listener.js — com.kwizzu.fastesttube-sr...
frames_communicator_content.js — com.kwizz...
i18n.js — com.kwizzu.fastesttube-srv36c8e2c

[] invokeAsynclimpl.js — com.kwizzu.fastesttube...
logger.js — com.kwizzu.fastesttube-srv36c8e...
networkContentProxy.js — com.kwizzu.fastest...
toolbox.js — com.kwizzu.fastesttube-srv36¢8...

wombat_content.js — com.kwizzu.fastesttube...

PRREPRPRRRRPRRRRFERBRE

xml.js — com.kwizzu.fastesttube-srv36c8e2c

F0
uuiw
100% Pll_!.élrllliillllll

%S .. .
oo Bady

Y2

¥

POINT BREA

Twenty-seven banks in three years. Anything
to catch the perfect wave.

BREAKPOINT

Tells the debugger to stop executing, so you can
examine variables, values, etc.

In this example, we have t
When the browser runs th

is JavaScript file, it wil
reaches those lines. You set breakpoints by clicki

Nree breakpoints set: line 9, line 20, and line 27.
stop execution whenever it
Nng the line number in the

column to the left of code. A (Safari) breakpoint will appear as a blue flag.

Q: On which line will execution stop first?

- B C), 1> Debugger Paused
TD Elements D Network [) Resources (@) Timelines
D> 4o L X Il < > i debugOljs

v Pause Reason
Triggered Breakpoint
v Call Stack
» ({7 hiLoops — debug01.js:5
3| Global Code — debug01.js:27

v Breakpoints
All Exceptions
Uncaught Exceptions
Assertion Failures
Vv i debugO1.js
Line 9
Line 20
Line 27

» DOM Breakpoints
» XHR Breakpoints

Vv Sources

<> 15 - Debugging — localhost

1 function hiLoops() {

hiLoops — debug01.js:5 v

{{} Debugger

{1} Q» Search
S Storage [aa] Canvas | %) Console | + | §S3

{3 (1 Resource
Vv Watch Expressions + % &

@
D} 3 // show variable outputs with for/while loops

s|) for (var 1 = 0; 1 < 4; i++) {

console.log("hi.i "

+ 1)

+ 2);

+ X)3

+ Y);

7 }
8
D for (var z = 0; z < 4; z++) {
10 console. log("hi.z "
11 }
12
13 let x = 0;
14
15 while (x < 4) {
16 console. log("hi.x "
17 X++;
D 18 }
19
oy ety -o;
B 21 while (y < 4) {
22 console. log("hi.y "
23 y++;
24 }
25 }
2

o
6

. IEZBhiloops();

No Watch Expressions

v Local Variables
(%] i: undefined

[this: Window {document: #document, NaN: N

(%) z: undefined
%] x: undefined
%] y: undefined

» Global Variables

OCOoONOUTLESE WN -

// Same broken and fixed examples from debug@4.]js,
// but with debugger statements

function numberToString(n, base) {
var result = "", sign = "";
debugger;
if (n <0) {
sign = "-=-";
n = —-n;
}
do {
result = String(n % base) + result;
n /= base;
y while (n > 0);

return sign + result;

}

console. log(numberToString(13, 10));

In addition to setting manual breakpoints in
the browser's console debugger, we can also
insert the debugger; statement in-line with our

code. This halts execution and allows you to
step in to the program at the designated line.

K~ ﬂ Elements Console Sources Network Performance Memory Application Security Audits AdBlock . X

[»] debug06.js X include.preload.js bt Tt o O
1 // Same broken and fixed examples from debug@4.]js, ©® Debugger paused
2 // but with debugger statements
. » Watch
4 function numberToString(n, base) { n = 13, base = 10
5 var result = "", sign = ""; result = "", sign = "" v Call Stack
6 deb ; . .
7| ii '(’%9?0 R ®» numberToString debug06.js:6
g zlg"_:. B (anonymous) debug06.js:19
10 } v Scope
11 do {
12 result = String(n % base) + result; v Local
13 n /= base; base: 10
" 14 nil 9); .
The Debugger is complex, 13|} while (n>0) no
. . 16 return sign + result; ;i;: o
17 } .
but it gives us access to 17 oy
19 console. log(numberToString(13, 10)); .
. » Global Window
some powerful tools, like the 20 |
g% v Breakpoints
ability to watch our code 23 No breakpoints
25 » XHR/fetch Breakpoints
execute step-by-step 2 i
. 27 » DOM Breakpoints
gg /AR AR AR AR AR AR A AN > Global Listeners
g? F iﬁo *Z Rmmmmx/ » Event Listener Breakpoints
Let’s look at a few important 32 // function numberToString(n, base) {

33 // var result ="", sign = "";

. 34 // 1if (n <8) {
commands first. 3577 sign = "-n;
36 // n = -=n;
37 // }
38 // console.log('n before while: ' + n);
39 // do {
49 // result = String(n % base) + result;
41 // n = Math.floor(n / base);
42 // console.log('n in while: ' + n);
43 // } while (n > @);
44
45 // return sign + result;
a6 // }
47

48 // console.log(numberToString(13, 10));
49 // console.log(numberToString(246, 2));
50

his is the toolbar in the JavaScript Debugging pane.*

> A~ T

e O

* These examples are from Chrome. The Debugger in other browsers functions similarly, though the icons and layout are slightly different.

When your code hits a breakpoint, it stops execution.
This icon allows your to Resume Execution (or vice-versa).

2

»

A

A~ T o9 (s O

The Step icon allows you to execute the next code
statement (i.e., “step”) in your program.

2

> " ¥ Tt 9 v O

'he Step Over icon allows you to execute the next

function call *without* stepping into it. This is useful if
the function you're currently paused in isn’'t relevant to
the bug you're trying to fix.

2

T T S e

o @

If you have paused on a function call that *is* relevant to
the code you're debugging, the Step Into icon allows
you to investigate that function.

2

> " ¥ Tt 9 (v O

If you have paused *inside* a function call that is *not*
relevant to the code you're debugging, the Step Out
icon allows you to execute the remainder of that
function’s code.

2

>~ T 9

o @

This Disable Breakpoints icon allows you to disable any
breakpoint flags you've set in the Debugger pane.

2

>~ ¥ Tt 9 v O

And lastly, this icon allows you to Pause on Exceptions.

2

> " ¥ Tt 9 v O

[For a nice Chrome-specific tutorial, check out “Get Started with Debugging JavaScript in Chrome Deviools.”]

https://developers.google.com/web/tools/chrome-devtools/javascript/

x| [N EH VRN

[> Debugger Paused numberToString — debug06.js:6 v

€ Q- Search

ﬁ Elements @ Network D Resourc... @ Timelines m Debugger £ Storage [ad Canvas |_£| Console + {9':}
» >4 s 2 [< > i debug0B.js 0 1 el Resource
vP R o 1 // Same broken and fixed examples from debug®@4.js, v Watch E . =
e 2 // but with debugger statements atch Expressions ' + W G
Debugger Statement 3 No Watch Expressions
4 function numberToString(n, base) { ! .
v Call Stack 5 var result = "", sign = ""; ¥ Local Variables
I numberToString — debug06.js:6 I: g:b?ggiré w base: 18
" 2 n:13
Global Code — debug06.js:19 a sign = "-";
. g .= result:
¥ Breakpoints 10 } { sign: e
Al E ti 1 do » O this: Window {document: #document, NaN: N
& xeoptions 12 result = String(n % base) + result; , '
(2] Uncaught Exceptions 13 n /= base; » Global Variables
[} Assertion Failures) } while (n > 0); |
» DOM Breakpoints 6 return sign + result;
17 }
» XHR Breakpoints 18
19 console.log(numberToString(13, 12));
¥ Sources 0
15 - Debugging — localhost 3 e 1
3

debug086.js

N N N N N N N i i i i N N N N N N
""r* ""r* ""r* ""r* ""r ""r ""r ""r‘ ""r‘ l"‘r ""r* |"‘r l"‘r ""r* ""r* ""r* 'Vr*

content_messages_server.js — com.kwizzu.fas...
content_messages.js — com.kwizzu.fastesttub...

content.js — com.kwizzu.fastesttube-srv36c8...

deferred.js — com.kwizzu.fastesttube-srv36c...
downloads.js — com.kwizzu.fastesttube-srv3...
event_listener_common.js — com.kwizzu.faste...
event_listener.js — com.kwizzu.fastesttube-sr...
frames_communicator_content.js — com.kwizz...
i18n.js — com.kwizzu.fastesttube-srv36c8e2c
invokeAsyncimpl.js — com.kwizzu.fastesttube...
logger.js — com.kwizzu.fastesttube-srv36c8e...
networkContentProxy.js — com.kwizzu.fastest...
toolbox.js — com.kwizzu.fastesttube-srv36¢8...
wombat_content.js — com.kwizzu.fastesttube...

xml.js — com.kwizzu.fastesttube-srv36c8e2c

o0 T V) B -5

~J

O O

W WM NN RN RN RN

—

/7
//
//
/7
//
//
//
/7
//
//
//
//

w w w
w N

D

w w w
S OO m

W NN - OO0

D

//
//

S OO m

/7
//

9 & bbb W

O O

e e
FIXED PROGRAM
SR AR R AR KRR ok KRRk ok

function numberToString(n, base) {

var result = "", sign = "";
if (n<0) {
Sign - u_u;
n = -n;
}
console.log('n before while: ' + n);
do {

result = String(n % base) + result;
n = Math.floor(n / base);

console.log('n in while:

} while (n > @);

return sign + result;

}

+ n);

console. log(numberToString(13, 10));
console. log(numberToString(246, 2));

Let’s take a deep breath and step into debug06.js

JEBUGGING TIP #/

USE VERSION CONTROL.

Undoing Merges

Now that you know how to create a merge commit, you'll probably make some by mistake. One of the
great things about working with Git is that it’s okay to make mistakes, because it's possible (and in many
cases easy) to fix them.

Merge commits are no different. Let's say you started work on a topic branch, accidentally merged it into
master, and now your commit history looks like this:

master

C1l - C2 - C5 - C6 - M

AN “

C3 - C4

Figure 138. Accidental merge commit
There are two ways to approach this problem, depending on what your desired outcome is.

Here's one of thousands of resources on how to undo accidental git merges.

https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging#_undoing_merges

JEBUGGING TIP #8

SEARCH THE WEB FOR YOUR ERROR.

Here's a warning | saw in multiple assignments:

4 »Phaser.Sound: Audio source already exists phaser.min.js:3

What's this error, and how do we fix it?

This took around 2 minutes to fix.

phaser audio source already exists 4 Q

All Shopping Videos Images News More Settings Tools

About 141,000 results (0.41 seconds)

javascript - Phaser warning "Audio source already exists" when mp3 ...

https://stackoverflow.com/.../phaser-warning-audio-source-already-exists-when-mp3-s... v
1 answer

Jun 14, 2018 - Well, as far as | can see you code seems to be doing things right. So |
will try to answer your questions with the knowledge | have: 1. What does ...

javascript - How to end a state in Phaser as well as navigate back ... Jun 21,2017
javascript - Upgrading from Phaser v2.0.1 to v2.7.7 breaks sound ... = Apr 23,2017
typescript - Playing audio with Phaser - Stack Overflow Sep 9, 2016

cordova - Phonegap + Phaser game shuts down background audio ... Dec 15,2015
More results from stackoverflow.com

N\
=" stackoverflow

Home

PUBLIC

@ Stack Overflow I
Tags
Users

Jobs

‘ Create Team |

Search...

1 Answer

active oldest votes

Well, as far as | can see you code seems to be doing things right. So | will try to answer your
questions with the knowledge | have:

1. What does this message "Audio source already exists"” mean ? Or should | ignore it?

The message means that there is already an instance of that sound playing as you can see in the
place where it is raised:

if (this._sound && ***!this.allowMultiple***)
{

console.warn('Phaser.Sound: Audio source already exists');

// this._disconnectSource();
}

It will throw this error if the sound you are trying to play is already being played by Phaser.Sound
and if is not allowMultiple... There it is the quid of the issue. AllowMultiple from source code:

/tt

* @property {boolean} allowMultiple - This will allow you to have multiple instances of this
* @default

B

this.allowMultiple = false;

So basically is complaining that you are trying to spawn several instances of a sound that is not
being allow multiple times. You shouldnt ignore it, but instead use the right flags.

Questions 2 and 3:

You shouldnt have re-add the resource, since thats why you load in the engine the source of audio,
to can be reused through all the levels. Nor you have to do it for all the states.

In order to reuse an Sound in multiple states, you should be able to add the audio or any game
object in the global scope and access it (Here | found someone trying to do what you ask in the
question) Other ways will be to add this resources as an attribute to the game object, so you dont
contaminate the global scope but only the Game object context. But | believe that is better strategy
to add this audios in different states and manage their deletion/creation in the states. Mainly
because JS is evil* and mutability may play a bad card on you

*Not that evil
To resolve this warning: Simply use the flag allowMultiple (created in here), eg:

this.soundl = this.game.add.audio("button") // allowMultiple is false by default
this.sound2 = this.game.add.audio("punch");

// Allow multiple instances running at the same time for sound2
this.sound2.allowMultiple = true;

this.sound3 = this.game.add.audio("coin");

[/ Allow multiple instances running at the same time for sound3
this.sound3.allowMultiple = true;l
share improve this answer edited Jun 21 at 13:50 answered Jun 21 at 13:44

PN SirPeople
1,924 »5 »19

JEBUGGING TIP #9

SLEEP ON IT. LET THE BRAIN DO ITS WORK.

.
-

e——
nmn

—
nnn

”
iy NN

JEBUGGING TIP #10

GRAB ANOTHER SET OF EYES AND HANDS.

[Let's test our newfound debugging powers on debug07.js]

MORE RESOURCES...

[The Rithm School section on Debugging JavaScript is short and succinct.]

{R} gitl'?ml Learn Full Time + Coding Workshops Free Online Courses Partnerships + About ~
chooO

{ Rithm School Intermediate JavaScript Part |. }

You've made it to the first part of Rithm's free Intermediate JavaScript course! You're ready to learn how to debug like a professional,
access and create values in more complex data structures, dive deep into callbacks and closures, and learn all about event-driven
programming with the DOM. You'll also learn about some more advanced built-in methods on arrays. By the end of the course, you'll be
able to build interactive browser based games and applications with JavaScript! If you want to go back and review some fundamentals,
head over to our JavaScript Fundamentals course.

The goal of this material is to get you familiar with intermediate JavaScript to prepare you for our full time program. When you're ready,
get started with Debugging JavaScript. Please be sure to let us know if you have any questions as you go along. Good luck!

1 Debugging JavaScript

® 3 sections, 1 -2 hours

_Eb] JavaScript Errors

@ Debugging with the Sources Tab

{/> Debugging Exercises

https://www.rithmschool.com/courses/intermediate-javascript

“JavaScript Errors and How to Fix Them”

POPULAR: JavaScript Promises fetch APl React.js Cache APl ES6 Features Node.js JavaScript jQuery

By Jani Harfikainen on January 22, 201§ 28 o

JavaScript can be a nightmare to debug: Some errors it gives can be very difficult to

Popular Topics ®

~ . . ; . S htaccess AJAX Canvas & SVG (CSS Dojo Firefox OS
understand at first, and the line numbers given aren’t always helpful either. Wouldn’t it be

HTML5 JavaScript JQuery Media Mobile MooTools

useful to have a list where vou could look to find out what they mean and how to fix them?
’ ’ Node.js Performance PHP SEO Shell WordPress

Here you go!

JavaScript Happens _(siartvour

Clean it up with Free Trial How to Create a RetroPie on Raspberry Pi -

: : _ Conquering Impostor Syndrome
Below is a list of the strange errors in JavaScript. Different browsers can give you different

messages for the same error, so there are several different examples where applicable. Being a Dev Dad

H t ol p JavaScript Promise AP
OW 10 reaq errors:

Before the list, let’s quickly look at the structure of an error message. Understanding the 7 Essential JavaScript Functions

structure helps understand the errors, and you’ll have less trouble if you run into any errors 'm an Impostor

not listed here.
fetch API

A typical error from Chrome looks like this:

https://davidwalsh.name/fix-javascript-errors

ELOQUENT JAVASCRIPT CONTENTS
3RD EDITION

Introduction
This is a book about JavaScript, programming, and the wonders of 1. Values, Types, and Operators (Part 1: Language)
the digital. You can read it online here, or get your own paperback 2. Program Structure
copy of the second edition. A paper third edition is expected to be 3. Functions
available this October. 4. Data Structures: Objects and Arrays
5. Higher-order Functions
6. The Secret Life of Objects
7. Project: A Robot
8. Bugs and Errors
E LO %JENT 9. Regular Expressions
10. Modules

[y
[

. Asynchronous Programming

. Project: A Programming Language

. JavaScript and the Browser (Part 2: Browser)
. The Document Object Model

. Handling Events

. Project: A Platform Game

And let’s not forget our]AVASCRIPT

excellent online textbook: —
Chapter 8: Bugs and Errors

[
N

[
o)

T
(@) TN SN

[
(o))

. Drawing on Canvas

. HTTP and Forms

. Project: A Pixel Art Editor

. Node.js (Part 3: Node)
. Project: Skill-Sharing Website

N o =
M 88 o 4{

' Vd
“d‘:v‘ N
:7J7¢LQ5
"‘J. - "'<
'VV¢J Z

""JO 4‘9)
v di
auu»’)
|itl"“

(1 A
'«:\‘3‘-“ SENteu s

Written by Marijn Haverbeke.

https://eloquentjavascript.net/08_error.html

