
Debugging

Every progammer
maeks mistakes
when they code.

Part of being a
better programmer
is learning how to
find and fix your
mistakes.

“Flaws in programs are usually called bugs.
Bugs can be programmer errors or problems
in other systems that the program interacts
with. Some bugs are immediately apparent,
while others are subtle and might remain
hidden in a system for years.”

Eloquent JavaScript (2E), p.139

[Wikipedia entry on the Y2K bug]

https://en.wikipedia.org/wiki/Year_2000_problem

“The first step is an intuition, and comes
with a burst, then difficulties arise—this
thing gives out and it is then that ‘Bugs’—
as such little faults and difficulties are
called—show themselves and months of
intense watching, study, and labor are
requisite before commercial success or
failure is certainly reached.”
— Thomas Edison, game programmer, in 1878

Debugging is searching for
(and fixing) errors in code.

Bugs happen because humans make
mistakes, software is complex, and
computers do exactly what you tell
them to do—even when what you tell
them is to do is incorrect.

(But bugs can also be fun, interesting, and useful.)

Q: How do YOU debug?

Here are some debugging
tips and best practices i’ve
learned over the years.

Debugging tip #1
UNDERSTAND YOUR TOOLS. THEN USE THEM.

Q: 
How do you detect
and diagnose a car
problem *before* it
leaves you stranded?

Your car’s dashboard is designed to be an early warning system.

The car’s diagnostic tools (e.g., warning
lights) provides symbolic messages that
the operator uses to reference
information in the owner’s manual. This
information can be specific instructions,
precautionary measures, or warnings.

Most mature programming
environments have some
manner of diagnostic
tools to help you debug. Warning: do not cradle giant

lollipops while driving.

JavaScript is native to the web, so we can use the
(really excellent) tools that are available in our web
browser of choice.

[This is debug01.js, if you need to see it.]

chrum

E’ry major browser got a JS console

safieri firfax

Access them with Command+Option+I (Mac) or Control+Shift+I (Windows, Linux)

Bad news: JavaScript has a unique set of “challenges” when it comes to debugging

JavaScript will happily construct and output a delicious “0burrito.”

“JavaScript can be made a *little* more strict
by enabling strict mode. This is done by
putting the string “use	strict” at the top of
a file or a function body…

Putting a “use	strict” at the top of your
program rarely hurts and might help you
spot a problem.”

Eloquent JavaScript (2E), p.140–1

[More info on strict mode at MDN]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Debugging tip #2
IF YOU HAVE AN ERROR—STOP. FIX IT BEFORE MOVING ON.

Source: KC Green

code

code

code
code

http://gunshowcomic.com/648

Debugging tip #3
YOUR ERROR IS OFTEN THE SIMPLEST POSSIBLE THING.

;Hi, I’m a semicolon. You know,
that weird punctuation that
you’re not really sure how to use
in everyday writing.

Turns out I’m pretty important in
(strict) JavaScript. I should end
every program statement.

With our new
semicolon friend
in mind, how many
errors will this
code generate?
[see debug02.js]

Surprise! Automatic semicolon
insertion is a thing.
[see JavaScript Semicolon Insertion for *detailed* technical info]

http://inimino.org/~inimino/blog/javascript_semicolons

remember to check for
small errors first:
spelling, capitalization, path
names, punctuation, etc.

Debugging tip #4
LEARN YOUR DEBUGGER’S DIALECT.

Let’s start with a common example: What does this error message mean?

Source: w3schools

JS Error
Objects

https://www.w3schools.com/js/js_errors.asp

Uncaught	ReferenceError
Error Object name

Uncaught	ReferenceError
This error was not caught in a
catch statement.

Error Object name

What is a catch statement?

When the browser
throws an error, you
want to try and catch it.

[Let’s load up debug03.html]

As usual, Mozilla Developer Network
has an excellent breakdown of the
try…catch syntax with descriptions
and examples.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch

Uncaught	ReferenceError
This error was not caught in a
catch statement.

Your code has referenced (i.e., tried to use) a variable
that doesn’t exist. You either need to declare the
variable, or make sure it’s in the proper scope.

Error Object name

Invalid	left-hand	side	in	assignment

Error Object message

Invalid	left-hand	side	in	assignment
You did a bad. Where you did a bad.

Error Object message

What kind of bad you did.

debug03.js:22
File

Console error bonus info

Line

Note the underline—clicking this will magically transport you to your error.

Behold the
error thou
hast sought.

Summary: there’s a lot of info packed into this cryptic string of words and numbers.

Debugging tip #5
LEAVE BREADCRUMBS TO FOLLOW.

We use this console
log method a lot, but
how do we use it?

This example program tries to convert a
whole number to a string in any base (e.g.,
decimal, binary, etc.) by repeatedly putting
the number’s last digit in a string then
dividing the number by the base to remove
its last digit.

Let’s look at this step-by-step then check
the output of the program (as written).

Most of the program is a single function that
accepts two parameters: the whole number
we want to convert to a string and the
desired base of that number.

For example, numberToString(246,	2)
should return the binary value of 246 as a
string, i.e., “11110110”

So our sample input (13,	10) should simply
output: “13”

First, we’re initializing two empty string
variables to store and return the function’s
final output.

The if statement checks to see if our whole
number is negative. If so, it stores the string
“-” in the sign variable, then converts our
number to a positive by flipping the sign.

The do-while loop is where most of the
function’s work is done. It will perform the
two inner statements until our original
number (stored in n) is 0 or less.

This statement takes the remainder of n
divided by base, converts it to type String,
then concatenates it to the contents of
results (which, the first time through the
loop, will be an empty string “”).

What should the remainder of 13 / 10 be?

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Remainder_()

We then assign n to the result of n divided
by the base parameter.

After the first do, will the while loop loop
again? And what’s the current value of n?

Once our loop is finished, we want to return
the requested string, which is a
concatenation of sign and result.

What’s the final output to the console?

Well then.

Despite showing no errors, we clearly have
an unintended bug in our function.

This is the point where you stop and think
about where you can strategically add
breadcrumbs (i.e., console.log statements) to
help you track down your bug.

Where would you add them?

Let’s look at debug04.js

The console revealed that our problem was
the n	/=	base; statement, because it was
outputting floats instead of whole numbers.

Math.floor() was the solution. 👍

(Math.floor returns the largest integer less than or equal to a given
number. Via MDN.)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/floor

Also remember that we’ve been using this
breadcrumb technique throughout the quarter.
I like to drop console.log() messages in most
state methods (but not update), so I always
know where I am in my game.

Guess what? There’s
more to console
than just logs()

[Let’s step inside the mind of debug05.js](Reference: “Diagnose and Log to Console”)

https://developers.google.com/web/tools/chrome-devtools/console/console-write

Also note that there are slight
variances in console styles
across browsers. Safari, for
instance, uses a sans serif font
versus monospace variants in
Firefox and Chrome.

Firefox Safari

Chrome

Logpoints are a brand new
feature in Chrome DevTools!

https://developers.google.com/web/updates/2019/01/devtools

Debugging tip #6
UNDERSTAND BREAKPOINTS AND STEPPING.

POINT BREAK BREAKPOINT
Twenty-seven banks in three years. Anything
to catch the perfect wave.

Tells the debugger to stop executing, so you can
examine variables, values, etc.

VS.

In this example, we have three breakpoints set: line 9, line 20, and line 27.
When the browser runs this JavaScript file, it will stop execution whenever it
reaches those lines. You set breakpoints by clicking the line number in the
column to the left of code. A (Safari) breakpoint will appear as a blue flag.

Q: On which line will execution stop first?

In addition to setting manual breakpoints in
the browser’s console debugger, we can also
insert the debugger; statement in-line with our
code. This halts execution and allows you to
step in to the program at the designated line.

The Debugger is complex,
but it gives us access to
some powerful tools, like the
ability to watch our code
execute step-by-step.

Let’s look at a few important
commands first.

This is the toolbar in the JavaScript Debugging pane.*

* These examples are from Chrome. The Debugger in other browsers functions similarly, though the icons and layout are slightly different.

When your code hits a breakpoint, it stops execution.
This icon allows your to Resume Execution (or vice-versa).

The Step icon allows you to execute the next code
statement (i.e., “step”) in your program.

The Step Over icon allows you to execute the next
function call *without* stepping into it. This is useful if
the function you’re currently paused in isn’t relevant to
the bug you’re trying to fix.

If you have paused on a function call that *is* relevant to
the code you’re debugging, the Step Into icon allows
you to investigate that function.

If you have paused *inside* a function call that is *not*
relevant to the code you’re debugging, the Step Out
icon allows you to execute the remainder of that
function’s code.

This Disable Breakpoints icon allows you to disable any
breakpoint flags you’ve set in the Debugger pane.

And lastly, this icon allows you to Pause on Exceptions.

[For a nice Chrome-specific tutorial, check out “Get Started with Debugging JavaScript in Chrome DevTools.”]

https://developers.google.com/web/tools/chrome-devtools/javascript/

Let’s take a deep breath and step into debug06.js

Debugging tip #7
USE VERSION CONTROL.

Here’s one of thousands of resources on how to undo accidental git merges.

https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging#_undoing_merges

Debugging tip #8
SEARCH THE WEB FOR YOUR ERROR.

Here’s a warning I saw in multiple assignments:

What’s this error, and how do we fix it?

This took around 2 minutes to fix.

Debugging tip #9
SLEEP ON IT. LET THE BRAIN DO ITS WORK.

W H E R E M A N Y A C T I O N S C R I P T B U G S W E R E S O L V E D

Debugging tip #10
GRAB ANOTHER SET OF EYES AND HANDS.

[Let’s test our newfound debugging powers on debug07.js]

More resources…
[The Rithm School section on Debugging JavaScript is short and succinct.]

https://www.rithmschool.com/courses/intermediate-javascript

“JavaScript Errors and How to Fix Them”

https://davidwalsh.name/fix-javascript-errors

And let’s not forget our
excellent online textbook:
Chapter 8: Bugs and Errors

https://eloquentjavascript.net/08_error.html

