
GIT DOWN
GIT UP GIT GIT

(Adapted from a lecture by TA Hall-of-Famer Dylan Lederle-Ensign)

git is “a free and open
source distributed
version control system”

git-scm.com

http://git-scm.com

Originally built by Linus Torvalds
to manage the development of
the Linux kernel.

The scale and complexity of the
Linux project requires a globally-
distributed, fast, and flexible
version control system. Yoshi’s cousin?

Q: WHAT IS VERSION CONTROL?

Version control tracks and
manages your software (and
other) project history, including
collaboration with team members.

LIFE BEFORE VERSION CONTROL
game-backup.js 

game.js 
gameNEW.js 

gameNEWv2.js 
gameNEWv2.1.js 
gameRealNew.js 
game-fixes-v2.js 
game-final.js 

game-final-fantasy-xv.js  
game-final-dev.js 
game-release.js 

game-release-actual.js 
game-FINAL-deathAwaits.js

WHY USE GIT?
1. I make you use it
2. It makes collaborative coding easier
3. It makes experimental coding easier
4. It makes open source contributions easier
5. “GitHub is my resume”

v. 1.0
Master
commit

v. 1.2
Master
commit

Feature 1

Feature 3

Feature 2 Feature 2
fix

merge

merge

merge
merge

Feature 4
experiment

v. 2.0
Master
commit

Fix

git’s “beads on a string” model

commit: add new content, a
“snapshot in time”

branch: new segment of
development history

merge: bring changes from one
branch into another

GIT AND PROJECT
ORGANIZATION

Git is distributed, non-hierarchical,
and flexible.

Every repository contains all of the
development history that has been
committed to it.

Git does not impose a branching
model on your project structure.

However…

...WE WILL USE A
PATTERN CALLED
GITFLOW

Basic structure:

• Master is always demoable
• Develop is functional but untested
• Feature-n is a specific task

[Check out this atlassian tutorial]

https://www.atlassian.com/git/tutorials/comparing-workflows

GOOD PRACTICES FOR FEATURE BRANCHES
Yep:

feature-add_scrolling

feature-implement_physics

feature-level_data_input

feature-enemy_prefabs

feature-menu_state

Nope:

todds-rad-branch

feature-things

tmpbranch

gitSux

adlfkadflkasdjflaksdj

Pretty much everything you
need to know about git for
class is in this nice tutorial :)

git-scm.com/docs/gittutorial

http://git-scm.com/docs/gittutorial
http://git-scm.com/docs/gittutorial

$ git init = initialize new repository (a hidden directory called .git)

$ git add . = add everything in directory, i.e. ‘staging’ (note the period!)

$ git commit -m “NDA - initial master commit” = commit with message

$ git log = view the history of all changes made to repository

$ git branch movement-system = create new branch

$ git branch = display a list of existing branches

$ git checkout -b movement-system = “check out,” i.e., switch to, a branch

$ git merge movement-system = merge branch into master

$ git status = where we’re at, what’s going on

FUN TIMES ON THE COMMAND LINE

[Let’s do a git demo]

GIT ≠ GITHUB
git is an open source, command line version
control system.

GitHub is VC-funded startup that provides
git repository hosting along with a social
web interface for managing projects.

IT MATTERS WHO OWNS THE TOOLS

Three key GitHub features:

• Forking
• Pull requests
• Octocat?

“A fork is a copy of a repository. Forking
a repository allows you to freely
experiment with changes without
affecting the original project.

Most commonly, forks are used to either
propose changes to someone else’s
project or to use someone else’s project
as a starting point for your own idea.”

GitHub Help

VERY LITERAL PUN

“Pull requests let you tell others about
changes you’ve pushed to a repository
on GitHub. Once a pull request is
opened, you can discuss and review the
potential changes with collaborators and
add follow-up commits before the
changes are merged into the repository.”

GitHub Help

For class:

Forking ensures that no one team
member is the “central repo.”

Pull requests ensure that your
team has built-in code review.

Important: git is great at version control
for text, but not so great for binary files.
In general, we want track changes to our
source, not our assets. To do so, we use a
.gitignore file. This file is a set of rules
that tells git which files to ignore before
a commit. Be sure to do this first!

[GitHub’s sample .gitignore]

[Back to the demo]

