
Time,
Procedural Generation

CMPM 120

1

CMPM 120

Objectives

By the end of today you should be able to...

1. Time
a. Describe how Phaser handles timers and events
b. Explain callbacks and closures
c. Implement an event that loops

2. Your Endless Runner
a. Have answers to your questions about your endless runner

3. Procedural Generation
a. Describe several ways to implement random content in a game

2

CMPM 120

Revising Past Assignments

Since the point of the exercises is to measure your understanding of the material, I will allow you
to submit a revision of your past assignment as long as:

➔ Your updated submission demonstrates your understanding of the material
◆ Include lots of comments, explaining why you chose to implement your solution in that

way
◆ If I can't understand why you made your decisions, you don't get the points

➔ Late penalties still apply, but from the point of your original turn-in
◆ I want to encourage you to turn stuff in on time
◆ Turning stuff in late makes extra work for both of us

➔ Revision grading will happen at a time of my discretion
➔ No revisions will be accepted past the end of week 9
➔ Does not apply to the final project: the final project milestones are hard deadlines

3

If your files aren't updating...

Empty cache and
hard refresh

4

CMPM 120

5

Safari
Enable the Develop menu from Safari menu - Preferences - Advanced.
On Safari version 11.1 and above: CMD+OPTION+R reloads the page ignoring cache.
On Safari version 9 and above: CMD+SHIFT+R reloads the page ignoring cache.
https://superuser.com/questions/186594/how-can-i-force-safari-to-perform-a-full-page-reload-without-using-the-mouse

Chrome
Windows: Ctrl + the Reload button. Or Ctrl + F5.
Or open the Chrome Dev Tools by pressing F12. Right click on the refresh button, select from menu.
Mac: ⇧ Shift + the Reload button. Or ⌘ Cmd + ⇧ Shift key + R.

Firefox
Open the developer toolbox (Ctrl+Shift+I or Cmd+Opt+I on Mac). Click the settings button (near the
top right). Scroll down to the Advanced settings on the bottom right. Check the option "Disable
Cache (when toolbox is open)". https://support.mozilla.org/en-US/questions/1103414

Or Ctrl + F5, or Ctrl + Shift + R, or ⌘ Cmd + ⇧ Shift key + R.

https://superuser.com/questions/186594/how-can-i-force-safari-to-perform-a-full-page-reload-without-using-the-mouse
https://support.mozilla.org/en-US/questions/1103414

Linter
Checking that your code is correct

6

What is a linter?
lint, or a linter, is a tool that analyzes
source code to flag programming errors,
bugs, stylistic errors, and suspicious
constructs. The term originates from a
Unix utility that examined C language
source code.

https://en.wikipedia.org/wiki/Lint_(software)

7

https://en.wikipedia.org/wiki/Lint_(software)

CMPM 120

Javascript Linters

ESLint: https://eslint.org/

JSHint: https://jshint.com/

For Atom: https://atom.io/packages/linter-jslint

For Sublime:
https://packagecontrol.io/packages/SublimeLinter

Online: https://www.jslint.com/

8

https://eslint.org/
https://jshint.com/
https://atom.io/packages/linter-jslint
https://packagecontrol.io/packages/SublimeLinter
https://www.jslint.com/
http://www.youtube.com/watch?v=hppJw2REb8g

Time

9

Events and Callbacks

CMPM 120

How do we make an event happen in the game?

➔ ???

10

CMPM 120

Many different ways to solve the problem

Play.update() {
doTheThing(); // use the game state update()

}

// create our own object and use its update()
ObstacleManager.update() { doTheThing(); }

var timer = game.timer.create(); // use a timer
timer.add(doTheThing);
timer.repeat(doTheThing);
timer.loop(doTheThing);

11

CMPM 120

Phaser has a lot of tools to manage time

http://localhost:8000/time/timer_example.html

game.time (the Time object)

Timers (objects for individual timers)

Timer Event (object that represents a single time-related event)

12

http://localhost:8000/time/timer_example.html
https://photonstorm.github.io/phaser-ce/Phaser.Time.html
https://photonstorm.github.io/phaser-ce/Phaser.Timer.html
https://photonstorm.github.io/phaser-ce/Phaser.TimerEvent.html

CMPM 120

TimerEvent

new TimerEvent(timer, delay, tick, repeatCount, loop,
callback, callbackContext, arguments)

The timer object to use timer
The delay before the event fires delay

 The next game clock time to fire at tick
 Repeat this many times repeatCount

 Does it loop? loop
 Function to call when it happens callback
 The value of this for the callback callbackContext
Parameters for the callback function arguments

13

CMPM 120

...but that's complicated so let's simplify

timer.add(delay, callback, callbackContext, arguments);
The timer object to use timer

The delay before the event fires delay
 Function to call when it happens callback
 The value of this for the callback callbackContext
Parameters for the callback function arguments

timer.loop(delay, callback, callbackContext, arguments);
timer.repeat(delay, repeatCount, callback, callbackContext,
arguments);

14

CMPM 120

Callback Context

event.callback.apply(event.callbackContext, event.args);

https://github.com/photonstorm/phaser-ce/blob/da7bdf93b52ff1fb889612f03
ef47293ec6af6ba/src/time/Timer.js#L478

function.prototype.apply(thisArg, [argsArray])

The apply() method calls a function with a given this value, and arguments
provided as an array (or an array-like object).

15

https://github.com/photonstorm/phaser-ce/blob/da7bdf93b52ff1fb889612f03ef47293ec6af6ba/src/time/Timer.js#L478
https://github.com/photonstorm/phaser-ce/blob/da7bdf93b52ff1fb889612f03ef47293ec6af6ba/src/time/Timer.js#L478
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

CMPM 120

Many different ways to solve the problem

Play.update() {
doTheThing(); // use the game state update()

}

// create our own object and use its update()
ObstacleManager.update() { doTheThing(); }

var timer = game.timer.create(); // use a timer
timer.add(doTheThing);
timer.repeat(doTheThing);
timer.loop(doTheThing);

16

CMPM 120

When does the code run?
Statements at the

top level

17

Functions called at
the top level

Game State
Functions that

Phaser calls

Functions called
from inside top-level

functions

Callbacks when
events happen

Events from input or
the browser

Functions called from
other functions

CMPM 120

Function Scope

18

Variable bindings are only valid in part of the
program.

This region is called the scope.

CMPM 120

let versus var

function exampleFunctionOne() {
let first = 7;

 console.log(first);
 for(let first = 0; first < 5;
first++) {
 console.log(first);
 }
 console.log(first);
}

The let statement declares
an enclosing block scope local variable.

19

function exampleFunctionTwo() {
// hoisting: var second;

 console.log(second);
 for(var second = 0; second < 5;
second++) {
 console.log(second);
 }
 console.log(second);
}

The var statement declares
a function scope variable.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

CMPM 120

Lexical Scope versus Closures

function parent() {
var parent_value = 1;
function child() {

var child_value = 2;
console.log(parent_value);

}
// error!
console.log(child_value);

}

20

function makeAdder(x) {
 return function(y) {
 return x + y;
 };
}
var add5 = makeAdder(5);
var add10 = makeAdder(10);
console.log(add5(2)); // 7
console.log(add10(2)); // 12

Lexical scope exists in the written code: the
parent_value is accessible in the child
function, but the child_value isn't
accessible in the parent function.

Closures use the run-time context from when
the outer function was called and the inner
function was created.

CMPM 120

⚠ BE CAREFUL WITH PAUSING ⚠

Phaser does not call update() when paused.
As a result, any input management tied to
update will no longer function. For instance, if
you bind pause to the P key, that key will turn
pause on, but then be unable to turn pause off.
REAL COOL GAME.

21

CMPM 120

22

Your endless runners

23

Procedural Generation

24

Some brief notes on

II. Noise

Noise
The most basic generative technique:
use a random number.

This is basically the same as rolling a
single die.

(More on noise:
https://www.redblobgames.com/article
s/noise/introduction.html)

https://www.redblobgames.com/articles/noise/introduction.html
https://www.redblobgames.com/articles/noise/introduction.html

Uniform Noise
Here’s a different way at looking at the
same generator.

Distribution
● You don’t need to limit yourself

to an even distribution of
random numbers,

● A normal/gaussian bell curve
often gives a better feel than
white noise.

● Other distributions can give
different feels!

Red Noise
There are other “colors” of noise:

In red noise lower frequencies have a
higher amplitude. (It is analogous to
the random walk algorithm)

In violet noise, high frequencies have
higher amplitude.

Blue noise is somewhere between
violet noise and white noise, and tends
to give a roughly even distribution.
Blue noise often gets used for
dithering.

Perlin Noise
Unlike the noise we’ve looked at so
far, the points generated by Perlin
noise are related to their neighbors.

double noise1(double arg)
{

int bx0, bx1;
float rx0, rx1, sx, t, u, v, vec[1];

vec[0] = arg;
if (start) {

start = 0;
init();

}

setup(0, bx0,bx1, rx0,rx1);

sx = s_curve(rx0);

u = rx0 * g1[p[bx0]];
v = rx1 * g1[p[bx1]];

return lerp(sx, u, v);
}

White Noise in 2D

White noise in two
dimensions just looks
like static

Perlin Noise 2D
But Perlin noise in two dimensions
start looking like clouds, or a
landscape.

(Ken Perlin also invented Simplex
noise, which works better in higher
dimensions.)

Controlling
Randomness
Dice are only one algorithm for getting
randomness. Sometimes other ways to
distribute the data are better for the
result you want.

Using playing cards (or a shuffled
array) gives an entirely different kind of
distribution, minimizing exact
repetition. (This often fits human
intuition better!)

You can also do things like generating
points in an offset grid. This gives a
fairly even but still random generation.

Layering Noise
We can combine noise: black and white Perlin noise on the left,
times a color gradient, makes the landscape on the right.

Terrain Generation
● One common use for noise is terrain

generation.
● You can define a height map with Perlin

noise: white becomes mountains and black
becomes valleys.

● (And you can use more noise to define
biomes.)

● Because you can sample each point
independently, it’s easy to jump to any
point in an infinite world.

● A lot of games use this to make their
maps, including Minecraft and No Man’s
Sky.

Noise Warping
Íñigo Quílez, domain warping

http://www.iquilezles.org/www/articles/warp/warp.htm

More Debugging Tips

37

CMPM 120

Useful random debugging advice

38

1. When you find a problem, change something so that same problem can't
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents

CMPM 120

Useful random debugging advice

39

Walk through your code step by step, explaining to yourself what is
supposed to happen

CMPM 120

Useful random debugging advice

40

1. When you find a problem, change something so that same problem can't
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents

CMPM 120

Useful random debugging advice

41

1. When you find a problem, change something so that same problem can't
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents

CMPM 120

Useful random debugging advice

42

1. When you find a problem, change something so that same problem can't
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents

CMPM 120

Useful random debugging advice

43

1. When you find a problem, change something so that same problem can't
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents

CMPM 120

AABB characters and slopes

An example of a real-world
physics-and-debugging problem in a game

with 2D physics like yours
https://twitter.com/eevee/status/1133248372624613376

44

https://twitter.com/eevee/status/1133248372624613376

