
Software Architecture
CMPM 120

1



CMPM 120

Objectives

By the end of today you should be able to...

1. Software Architecture
a. Define software architecture
b. Discuss how to apply software architecture when implementing a game 

2. Dialog Systems
a. Discuss how the requirements translate into software architecture
b. Apply the process for figuring out the architecture of your own games

3. Finite State Machines
a. Describe a Finite State Machine
b. Implement a FSM in your own games

2



CMPM 120

Revising Past Assignments

Since the point of the exercises is to measure your understanding of the material, I will allow you 
to submit a revision of your past assignment as long as:

➔ Your updated submission demonstrates your understanding of the material
◆ Include lots of comments, explaining why you chose to implement your solution in that 

way
◆ If I can't understand why you made your decisions, you don't get the points

➔ Late penalties still apply, but from the point of your original turn-in
◆ I want to encourage you to turn stuff in on time
◆ Turning stuff in late makes extra work for both of us

➔ Revision grading will happen at a time of my discretion
➔ No revisions will be accepted past the end of August 23rd
➔ Does not apply to the final project: the final project milestones are hard deadlines

3

Also: Tell me 

about it!



CMPM 120

Problem Solving

4

Define the actual problem

Think about it

Plan a solution, including alternate plans

Carry out the plan

Look Back: verify you solved the original problem.



CMPM 120

5

Software architecture refers to the fundamental 
structures of a software system and the discipline 
of creating such structures and systems. Each 
structure comprises software elements, relations 
among them, and properties of both elements and 
relations.

https://en.wikipedia.org/wiki/Software_architecture 

https://en.wikipedia.org/wiki/Software_architecture


CMPM 120

6

Software architecture refers to the art and 
science of designing and implementing software 
products. [...] The software architecture is 
analogous to the set of engineering drawings and 
diagrams for a building. [...] It is not advisable to 
begin “construction” without understanding the 
full scope of the engineering responsibility.

Introduction to Software Engineering, Richard F. 
Schmidt, Software Engineering 

https://doi.org/10.1016/B978-0-12-407768-3.00001-X


CMPM 120

7

“Making a game combines everything 
that’s hard about building a bridge with 
everything that’s hard about composing 
an opera,” he said. “Games are basically 
operas made out of bridges.”

Frank Lantz, 
as quoted in "Master of the Game (Diploma Says So)"

https://www.nytimes.com/2014/06/01/arts/video-games/talented-designers-stream-into-mfa-video-game-programs.html


8

Architecture for Dialog Systems?



CMPM 120

9

What do we need in a dialog system?

➔ ???

Think about it, write it down



CMPM 120

Nathan's Architecture: Design Requirements

10

dialog box

Text is read from 
external file

Prompt and wait 
for user input

"typing" text

Character portrait 
(with tweens)



CMPM 120

Nathan's Architecture

1. Create structured dialog data in JSON
2. Create and position dialog box sprite
3. Check to see if there are dialog lines remaining in current conversation
4. Check to see if there is a new speaker and tween them into view (and 

tween out previous speaker)
5. Construct dialog by adding speaker + line
6. Create a timer to “fire” dialog letter by letter
7. Lock input until all characters have printed
8. Increment; repeat

11



CMPM 120

Some dialog systems

12

Yi's PhaserDialog
https://github.com/kthtes/PhaserDialog 

April Grow's dialog system

120 student Tina 
Peng's timed dialog

https://github.com/kthtes/PhaserDialog


Excerpts from April Grow's presentation on Data

CMPM 120



Game Mechanics

● Move with arrows, R to reset
● Collision:

○ Player collides with a slime
○ Spacebar if something to say
○ Hit Spacebar: Show text
○ Hit Spacebar again: Text goes away

● Example includes:
○ Custom bitmap font
○ Looping & not-looping examples
○ Simultaneous utterances between player & slimes
○ Prerequisite previous dialogues

■ Also between different slimes



Unique ID (used as prerequisite reference)

Which dialogue agent is speaking (unique name, 
part of their prefab)

Which other dialogue agent is being spoken to 
(unique name, part of their prefab)

Which other dialogue object is required to have 
been read (or not read) (via Unique ID)

Our Data: The Dialogue Object

Whether or not to repeat this utterance infinitely

The text to be displayed



Phaser Game
Load Font/Parse Data
Feed Data to Dialogue 

Managers
Collide Dialogue Agents

“Dialogue Agents”

PlayerNPCs

main.js

Phaser sprite prefabs

slime.js & player.js

DialogueManager
With which other dialogue 

agent am I colliding?
Does this agent have 

something to say to that 
agent?

Are the preconditions for 
that utterance met?

Has the player 
acknowledged reading 

this utterance?

dialogueManager.js

each contains a

Code Overview
Dialogue Objects

dialogue.json

data for parent agent



Plaser Game
Input Event

Collision Event

“Dialogue Agents”

PlayerNPCs

Clear Game Dialogue 
Triggers

Animate on events
Pass on events to manager

DialogueManager
Prerequisite Checks

Prompt Displays
Text Displays

Dialogue States

Handles all logic about dialogue 
regardless of agent specifics

Clear Interfaces Between Segments of Code

Dialogue Objects

Consistent data structure

Event context

Event context



You May Want to Author or Visualize Your Data

● Simple version: CSV via Excel!
○ Many authors hate but 

understand this format.
○ Must be parsed and structured 

into other formats
○ Graphs!
○ Useful algorithms/macros



You May Want to Author or Visualize Your Data

● Less Simple: JSON or XML (or other markup language)
○ More easily used by programs directly as it has more structure/context
○ Good at representing hierarchies!
○ AUTHORS’ BANE!!! 



You May Want to Author or Visualize Your Data

● Tools that read and/or manipulate JSON or XML
○ Structured data with minimal post-production? Check!

■ Bonus if you can reuse save/loading code
○ A shiny interface that’s readable and usable? You hope so

■ Beating excel’s authoring environment is a low bar

● Many engines or game companies have their own
● Many people make small web tools too



Our Use Case

● What we need out of our data
○ Nodes 
○ Links 

● (CS 101: Vertices and Edges)
● One way to organize the data:

○ Nodes: Dialogue Objects
○ Links: Prereqs

● Alternative:
○ Nodes: Agents
○ Links: Dialogue Objects between agents



Some Tools

● The internet is full of free programs that help us visualize data
● Most of them work more for the statistical stuff before
● But we can bend them to our will because graphs are common structures
● Here are some systems:

○ http://vizsweet.com/ (closed beta)
○ http://dygraphs.com/index.html (GRAPHS)
○ https://developers.google.com/chart/interactive/docs/gallery (Google’s)
○ https://philogb.github.io/jit/demos.html (Infovis: gradients o.o)
○ https://d3js.org/ (choice for this demo)

■ Beware differences in v3 and later versions
■ The demo is in the most recent version, v5

http://vizsweet.com/
http://dygraphs.com/index.html
https://developers.google.com/chart/interactive/docs/gallery
https://philogb.github.io/jit/demos.html
https://d3js.org/


CMPM 120

Other Narrative Tools

23

Yarn: https://github.com/InfiniteAmmoInc/Yarn

Javascript port of Yarn: https://github.com/jhayley/bondage.js/ 

Ink (from Inkle): https://www.inklestudios.com/ink/ 

Javascript port of Ink: https://github.com/y-lohse/inkjs 

https://github.com/InfiniteAmmoInc/Yarn
https://github.com/jhayley/bondage.js/
https://www.inklestudios.com/ink/
https://github.com/y-lohse/inkjs


CMPM 120

Yarn, Ink, Twine...

24



Q:
What are the differences 
between the dialog demo we 
just saw and a narrative tool 
such as Yarn or Ink?

25



CMPM 120

26

What could the implementation look like?

➔ ???



CMPM 120

Games of Emergence versus Progression 

The point of this paper is frightfully simple: That most 
computer games are the combination of two different 
ways of presenting the player with a challenge, one 
which I will term emergence (simple rules combining, 
leading to variation) and one of progression (serially 
introduced challenges).

Jesper Juul: "The Open and the Closed: Game of emergence and games of 
progression".http://www.jesperjuul.net/text/openandtheclosed.html 

27

http://www.jesperjuul.net/text/openandtheclosed.html


CMPM 120

Emergence versus Progression, Generalized

28

Narrative Progression

Tech Trees

Character Upgrades

Upgrade Progressions - even indirect 
progressions, such as Subnautica

Crafting Trees

Hypertext

Agents

Resources

Simulation



Finite State Machines

29



CMPM 120

30

⌛
Let's go back in time…

...to week 2.



CMPM 120

31

States bundle up a series of 
methods that help get the 
program into and potentially out 
of a section of gameplay.

An Introduction to HTML5 Game 
Development with Phaser.js, p.58



CMPM 120

32

Boot Menu Pre-Game Game Game Over

High Score 
(OS)



CMPM 120

33

You can think of states like spaces on a game board...

♟

...where your game piece can only be in one space at a time

This is also called a
Finite State Machine (FSM)



CMPM 120

34

"A design pattern systematically 
names, motivates, and explains a 
general design that addresses a 
recurring design problem in 
object-oriented systems."

from Design Patterns, by Gamma, Helm, Johnson, 
Vlissides



CMPM 120

35

Wiki Wiki Web



CMPM 120

36

Robert Nystrom wrote 
a book about software 
patterns in game 
development:

http://gameprogrammingpatterns.com/ 

(and it can be read 
free online)

http://gameprogrammingpatterns.com/


CMPM 120

37

Some of these may look familiar to you.



Q:

Why are state 
machines useful?

38



CMPM 120

Games have a 
lot of complex 
behaviors
Perhaps you’ve noticed a bit of 
a problem when we try to 
implement complex 
interactive behaviors in our 
characters.

Even a basic double jump gets 
tricky as we start to add 
boolean flags to account for 
various states the character 
might be in.

39



CMPM 120

As character behaviors get 
increasingly more complex, our 
gnarly chain of if/else statements 
and boolean flags starts to break 
down.

40



CMPM 120

41

Jumping

Double 
Jumping

Standing

Ducking

Walking

Attacking

A Simplified FSM

Release ⬇

Press ⬇

Pr
es
s 
⬌

Re
le
as
e 
⬌

Press A

Press A

Press B

Pres
s B

Press A



CMPM 120

In its purest form, 
an FSM has:
States,
Inputs,
And Transitions

Source: Robert Nystrom, Game Programming Patterns, “State”
https://gameprogrammingpatterns.com/state.html 

42

Jumping

Double 
Jumping

Press A

https://gameprogrammingpatterns.com/state.html


CMPM 120

43

Jumping

Double 
Jumping

Standing

Ducking

Walking

Attacking

Release ⬇

Press ⬇

Pr
es
s 
⬌

Re
le
as
e 
⬌

Press A

Press A

Press B

Pres
s B

Press A

♟

There are a fixed set of states that the machine can be in. 
Our machine can stand, walk, duck, jump, double jump, and attack.



CMPM 120

44

Jumping

Double 
Jumping

Standing

Ducking

Walking

Attacking

Release ⬇

Press ⬇

Pr
es
s 
⬌

Re
le
as
e 
⬌

Press A

Press A

Press B

Pres
s B

Press A

♟

The machine can 
only be in one state 
at a time.

What can't our 
machine do?



CMPM 120

45

Jumping

Double 
Jumping

Standing

Ducking

Walking

Attacking
A sequence on 
inputs or events is 
sent to the machine.
What inputs does 
this machine 
respond to?

Release ⬇

Press ⬇

Pr
es
s 
⬌

Re
le
as
e 
⬌

Press A

Press A

Press B

Pres
s B

Press A



CMPM 120

46

Jumping

Double 
Jumping

Standing

Ducking

Walking

Attacking

Each state has a set of transitions.

Release ⬇

Press ⬇

Pr
es
s 
⬌

Re
le
as
e 
⬌

Press A

Press A

Press B

Pres
s B

Press A



CMPM 120

47

Let's make a simple FSM

solid liquid gas

freeze

melt
vaporize

condense



CMPM 120

48

Instead of reinventing the “machine,” let’s build on someone else’s work.
(Namely, Joshua Shepard’s JS State Machine object)

https://github.com/jcd-as/nadion/blob/master/src/statemachine.js


CMPM 120

49



CMPM 120

This FSM implementation
requires that we pass our
states as a JSON object.
Each state has a name
and event(s). One state is
flagged as our init state.

50



CMPM 120

Also note the fancy new way we're loading our helper script...
51



CMPM 120

52

FSM Demo

solid liquid gas

freeze

melt
vaporize

condense



CMPM 120

Water Phase Diagram
53Image from: https://en.wikipedia.org/wiki/File:Phase-diag2.svg 

https://en.wikipedia.org/wiki/File:Phase-diag2.svg


CMPM 120

Types of Ices

54

Image from: 
https://en.wikipedia.org/wiki/File:P
hase_diagram_of_water.svg 

https://en.wikipedia.org/wiki/File:Phase_diagram_of_water.svg
https://en.wikipedia.org/wiki/File:Phase_diagram_of_water.svg


CMPM 120

55

Let’s check out another state 
machine implementation, 
this time with animation.

(This example is by Adam 
Roth, who uses an adapted 
state machine originally 
implementation by David 
Hayes.)

https://github.com/aroth/phaser-extend-sprite-statemachine-example
https://github.com/aroth/phaser-extend-sprite-statemachine-example
https://github.com/drhayes/impactjs-statemachine
https://github.com/drhayes/impactjs-statemachine


CMPM 120

5400+ lines of Player code for Celeste.
56

https://github.com/NoelFB/Celeste/blob/master/Source/Player/Player.cs


CMPM 120

57

It’s worth trying a several 
different state machine 
implementations to see 
what’s best for your game.

(This one’s by Dave Stewart)

http://statemachine.davestewart.io/index.html


CMPM 120

(This one by Jake Gordon 
is really sophisticated.)

58

https://github.com/jakesgordon/javascript-state-machine


CMPM 120

Or you might prefer 
building your own 
with some tutorial 
assistance.

59

https://gamedevacademy.org/how-to-use-state-machines-to-control-behavior-and-animations-in-phaser/
https://gamedevacademy.org/how-to-use-state-machines-to-control-behavior-and-animations-in-phaser/


What do you want to learn?

60



CMPM 120

Potential Topics

61

● Cameras
● Particles
● P2 Physics
● Time & Timers
● Advanced Git
● State Machines
● Text and Fonts
● Animation and Tweens

● CSS (& other web dev 
stuff)

● Audio
● Scaling
● ...something you want to 

know about!



62

Write down 3 
things your game 
needs

What do you not know? 
What do we need to talk about more?



CMPM 120

Potential Topics

63

● Cameras
● Particles
● P2 Physics
● Time & Timers
● Advanced Git
● State Machines
● Text and Fonts
● Animation and Tweens

● CSS (& other web dev 
stuff)

● Audio
● Scaling
● ...something you want to 

know about!



More Debugging Tips

64



CMPM 120

Useful random debugging advice

65

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

66

Walk through your code step by step, explaining to yourself what is 
supposed to happen



CMPM 120

Useful random debugging advice

67

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

68

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

69

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

Useful random debugging advice

70

1. When you find a problem, change something so that same problem can't 
happen again
a. assert()
b. Keep a debugging notebook

2. Make debug tools
a. Quicker feedback is better
b. Display values live if possible

3. Only make one change at a time and then test it
4. Just because you paused the game doesn't mean it's paused

a. And stopping one update doesn't mean you stopped all of them
5. console.log() is slow

a. Faster to print an array as a string than to individually print the contents



CMPM 120

AABB characters and slopes

An example of a real-world 
physics-and-debugging problem in a game 

with 2D physics like yours
https://twitter.com/eevee/status/1133248372624613376 

71

https://twitter.com/eevee/status/1133248372624613376

