CSE160 - Oct 8

- Everything is triangles
- OpenGL Primitives
- How is this stored in buffers
- Rasterization
- Normals
- Interpolation
- Non triangle modeling
- Assignment 1
- Administrative
- Q\&A

Everything is made of atoms triangles

Triangle Meshes

Everything made of triangles

Pen and ink drawing of a wireframe chalice ("Perspective Study of a Chalice"), done by

Paolo Uccelloin 1430-1440, Florence, Italy.

Mesh Generation

Modeling

- Software packages like Maya, Blender, etc. are powerful but hard to use
- Tremendous time investment needed to create complex models

Laser Scanning

- Good for capturing real objects
- Scanners are expensive
- Registering multiple scans is difficult
- Turning point data into triangles is also non-trivial

Level of Detail

Far Away Objects Need Less Detail

- Acquisition systems often produce huge models
- Create multiple versions of models
- Pick the correct version for each view
- Can result in substantial performance gains
- Simplification is nontrivial

424,376

60,000

8,000

1,000

OpenGL Primitives

Points in OpenGL

GL_POINTS

- Draws square pixel region on screen
- One pixel wide by default
- With antialiasing, circular region drawn with smooth edges
- Size controllable with glPointSize ()
- Easy, efficient way to activate pixels

Lines in OpenGL

GL_LINES

- Draws lines one pixel wide
- Width can be controlled by glLineWidth ()
- Successive pairs of vertices specify segments

GL_LINE_STRIP

- Like GL_LINES, but successive vertices specify next connected segment in strip

GL_LINE_LOOP

- Like GL_LINE_STRIP, but also connects last and first vertex

Triangles in OpenGL

GL_TRIANGLES

- Successive vertex triples specify individual triangles
- Requires three vertices to be emitted for every triangle

GL_TRIANGLE_STRIP

- First triple specifies first triangle
- Subsequent vertices each specify new triangle, along with previous two vertices
- One vertex emitted per triangle in long strips
- But stripifying meshes is nontrivial

GL_TRIANGLE_FAN

- First vertex is center of fan
- Subsequent vertices form ordered bounday
- One vertex emitted per triangle for dense fans
- But few such fans arise in practice

GL_QUADS

- OpenGL only handles planar quadrilaterals properly

GL_QUAD_STRIP
 It's safer to stick to triangles.

GL_POLYGON

- OpenGL only handles convex polygons properly

Reasons triangles are better

- Definitely planar
- Definitely convex
- Definitely not self intersecting
- Exactly 3 vertices always

Concave polygon has interior angle(s) > 180°

Must be split up into multiple convex polygons. For example:

Polygonal Meshes

(image courtesy of Wikipedia)

Q: What will render a square?

(A)
gIBegin(GL_TRIANGLES)
gIVertex3f($0,0,0) ;$
gIVertex3f(1,1,0);
gIVertex3f($1,0,0) ;$
gIVertex3f($0,0,0) ;$
gIVertex3f($0,1,0) ;$
gIVertex3f($1,1,0) ;$
gIEnd($) ;$
(B)
gIBegin(GL_QUADS)
gIVertex3f($0,0,0) ;$
gIVertex3f($0,1,0) ;$
gIVertex3f(1,0,0);
gIVertex3f($1,1,0) ;$
gIIEnd($) ;$
(C)
glBegin(GL_TRIANGLES)
glVertex3f($0,0,0$);
glVertex3f(1,1,0);
glVertex3f(1,0,0);
glVertex3f($0,0,0$);
glVertex3f(1,1,0);
gIVertex3f(0,1,0);
gIEnd();
(D)
glBegin(GL_QUADS)
glVertex3f(0,0,0);
glVertex3f(0,1,0);
glVertex3f(1,1,0);
glVertex3f($1,0,0$);
glEnd();
(E) I just really don't know

How is this stored in buffers

[V0.x, V0.y, V1.x, V1.y, V2.x, V2.y, V3.x, V3.y, V4.x, V4.y, V5.x, V5.y, V6.x, V6.y, ...]

Point $0 \quad$ Point $1 \quad$ Point 2

Attribute Vec2 a_Position;

drawArrays(gl.POINTS, $0, \mathrm{n}$);

Points in OpenGL

GL_POINTS

- Draws square pixel region on screen
- One pixel wide by default
- With antialiasing, circular region drawn with smooth edges
- Size controllable with glPointSize()
- Easy, efficient way to activate pixels

[V0.x, V0.y, V1.x, V1.y, V2.x, V2.y, V3.x, V3.y, V4.x, V4.y, V5.x, V5.y, V6.x, V6.y, ...]

Line 0

Line 1

Line 2

Attribute Vec2 a_Position;

drawArrays(gl.LINES, 0, n/2);

Lines in OpenGL

GL_LINES

- Draws lines one pixel wide
- Width can be controlled by glLineWidth()
- Successive pairs of vertices specify segments

GL_LINE_STRIP

- Like GL_LINES, but successive vertices specify next connected segment in strip

GL_LINE_LOOP

- Like GL_LINE_STRIP, but also connects last and first vertex

[V0.x, V0.y, V1.x, V1.y, V2.x, V2.y, V3.x, V3.y, V4.x, V4.y, V5.x, V5.y, V6.x, V6.y, ...]

Triangle 0

Triangle 1

Attribute Vec2 a_Position;

drawArrays(gl.TRIANGLES, $0, n / 3$);
Triangles in OpenGL

GL_TRIANGLES

- Successive vertex triples specify individual triangles
- Requires three vertices to be emitted for every triangle

GL_TRIANGLE_STRIP

- First triple specifies first triangle
- Subsequent vertices each specify new triangle, along with previous two vertices
- One vertex emitted per triangle in long strips
- But stripifying meshes is nontrivial

GL_TRIANGLE_FAN

- First vertex is center of fan
- Subsequent vertices form ordered bounday
- One vertex emitted per triangle for dense fans
- But few such fans arise in practice

Vertex shader runs for each item in the buffer

First Execution

Second Execution

Third Execution

Figure 3.11 How the data in a buffer object is passed to a vertex shader during execuiton
[V0.x, V0.y, /1.x, V1.y, V2.x, V2.y, V3.x, V3.y, V4.x, V4.y, V5.x, V5.y, V6.x, V6.y, ...]

Tri angle 0
drawA rays(gl.TRIANGLES, $0, \mathrm{n} / 3$);
Triangles in OpenGL

GL_TRIANGLES

- Successive vertex triples specify individual triangles
- Requires three vertices to be emitted for every triangle

GL_TRIANGLE_STRIP

- First triple specifies first triangle
- Subsequent vertices each specify new triangle, along with previous two vertices
- One vertex emitted per triangle in long strips
- But stripifying meshes is nontrivial

GL TRIANGLE FAN

- First vertex is center of fan
- Subsequent vertices form ordered bounday
- One vertex emitted per triangle for dense fans
- But few such fans arise in practice

Attribute Vec2 a_Position;

drawArrays(gl.TRI.ANGLES, $0, \mathrm{n} / 3$);
Triangles in OpenGL

GL_TRIANGLES

- Successive vertex triples specify individual triangles
- Requires three vertices to be emitted for every triangle

GL_TRIANGLE_STRIP

- First triple specifies first triangle
- Subsequent vertices each specify new triangle, along with previous two vertices
- One vertex emitted per triangle in long strips
- But stripifying meshes is nontrivial

GL_TRIANGLE_FAN

- First vertex is center of fan
- Subsequent vertices form ordered bounday
- One vertex emitted per triangle for dense fans
- But few such fans arise in practice

Face-Vertex Meshes (FV)

List of faces defined by vertex indices

Face-Vertex Meshes

Face List
Vertex List

f0	v0 v4 v5
f1	v0 v5 v1
f2	v1 vS v6
$f 3$	v1 v6 v2
$f 4$	v2 v6 v7
$f 5$	v2 v7 v3
f6	v3 v7 v4
f7	v3 v4 vo
18	v8 v5 v4
$f 9$	v8 v6 v5
$f 10$	v8 v7 v6
$f 11$	v8 v4 v7
$f 12$	v9 v5 v4
$f 13$	v9 v6 v5
$f 14$	v9 v7 v6
$f 15$	v9 v4 v7

(image courtesy of Wikipedia)
drawArrays(gl.TRIANGLES, $0, n / 3$); drawElements(...);

3D Scene/Model File Formats

- Wavefront OBJ (.obi)
- 3DS Max (.3ds)
- Geomview OFF (Object File Format) (.off)
- PLY (ply) for scanned data
- ... and more

Example data in a 3D file (.ply)

Rasterization

Rasterization = Turn on all pixels inside the triangle

[V0.x, V0.y, /1.x, V1.y, V2.x, V2.y, V3.x, V3.y, V4.x, V4.y, V5.x, V5.y, V6.x, V6.y, ...]

Tri angle 0
drawA rays(gl.TRIANGLES, $0, \mathrm{n} / 3$);
Triangles in OpenGL

GL_TRIANGLES

- Successive vertex triples specify individual triangles
- Requires three vertices to be emitted for every triangle

GL_TRIANGLE_STRIP

- First triple specifies first triangle
- Subsequent vertices each specify new triangle, along with previous two vertices
- One vertex emitted per triangle in long strips
- But stripifying meshes is nontrivial

GL TRIANGLE FAN

- First vertex is center of fan
- Subsequent vertices form ordered bounday
- One vertex emitted per triangle for dense fans
- But few such fans arise in practice

How is shading done in OpenGL?

1. Attributes are specified on vertices.

How is shading done in OpenGL?

2. Attributes are interpolated across triangles by the rasterizer
(see appendix for details)

Rasterizer also breaks the triangle into"fragments."

How is shading done in OpenGL?

3. Each fragment runs the shader using interpolated values as inputs.

Top-Left Rasterization Rule

\times	\times	\times	\times	\checkmark		$1 \times$	\cdots	\times	\times	\times	\times	\times	\times	-	\times
\times	$1 \times$	\times	*	X	\bar{x}		\rightarrow	\times			\times	\times			\times
\times	\neq	\times	\times			\times	x		*	$*$	$>$	\times		\cdots	\times
\times	\times	\times	x	\times	\times	\times	\times	χ	\times		\times	\times	\times	$*$	\times
\times	\times	\times	\times	\times							,	\times	\times	\%	\times
\times	\times	+	\times	\times		\times		\times	${ }^{\circ}$	\times	$*$		-		\cdots
\times	\times	\times	\times	\times					\times	\times	7	\times	*	y	$*$
\times			\times	\times			\rightarrow								
	\times	Pixel (cross = center; $x, y @ 0.5$)							riang				Covered Pixels		

[Rasterization Rules (Direct3D 10) - MSDN]

I'm using TriangleList to output my primitives. Most all of the time I need to draw rectangles, triangles, circles. From time to time I need to draw very thin triangles (width=2px for example). I thought it should look like a line (almost a line) but it looks like separate points :)

Following picture shows what I'm talking about:

First picture at the left side shows how do I draw a rectangle (counter clockwise, from top right corner). And then you can see the "width" of the rectangle which I call "dx".

How to avoid this behavior? I would it looks like a straight (almost straight) line, not as points :)

```
opengl gl-triangle-strip
```


Normals

Triangle Normals

Per-Triangle

- Triangle defines unique plane:
- Can easily compute unit normal vector from vertices:

$$
\begin{aligned}
& \mathbf{a}=\mathbf{v}_{2}-\mathbf{v}_{1} \\
& \mathbf{b}=\mathbf{v}_{3}-\mathbf{v}_{1}
\end{aligned}
$$

$$
\mathbf{n}=\frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}
$$

- Orientation depends on vertex order (clockwise yields $-\mathbf{n}$)

How can a vertex have a normal?

(FACE NORMALS)

$$
\boldsymbol{N}_{V}=\frac{\sum_{k=1}^{n} \boldsymbol{N}_{k}}{\left|\sum_{k=1}^{n} \boldsymbol{N}_{k}\right|}
$$

Interpolating color

Per face vs per vertex normals

Q about Normals

What is the per-polygon normal shown?
(A) $1,1,1$
(B) $0,0,1$
(C) $1,0,0$
(D) $0,1,0$
(E) Don't know

Q about Normals

What is the per-vertex normal at point A?
(A) $1,1,1$
(B) 1,1,-1
(C) $1 / \mathrm{sqrt}(3), 1 / \mathrm{sqrt}(3), 1 / \mathrm{sqrt}(3)$
(D) $-1 /$ sqrt(3), $1 / \mathrm{sqrt}(3), 1 / \mathrm{sqrt}(3)$
(E) Don't know

http://tiny.cc/160108

Interpolation

Consider sampling color(\mathbf{x}, y)

What is the triangle's color at the point x ?

Review: interpolation in 1D

$f_{\text {recon }}(x)=$ linear interpolation between values of two closest samples to x

Linear interpolation

1D nearestneighbour

Linear

Cubic

$$
\begin{aligned}
& \frac{(X-X 1)}{(X 2-X 1)}=\frac{(Y-Y 1)}{(Y 2-Y 1)} \\
& Y=Y 1+(X-X 1) \frac{(Y 2-Y 1)}{(X 2-X 1)}
\end{aligned}
$$

Bi-linear interpolation

Bi-linear interpolation

(9) 2006 blog.forret.com

Suppose you start with the smallest image and need a big one?

Bilinear Filtering

Want to sample texture value $f(x, y)$ at red point

Black points indicate texture sample locations

Bilinear filtering

Take 4 nearest sample locations, with texture values as labeled.

Bilinear filtering

And fractional offsets, (s, t) as shown

Bilinear filtering

Linear interpolation (1D)

$$
\operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
$$

Bilinear filtering

Linear interpolation (1D)

$$
\operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
$$

Two helper lerps (horizontal)

$$
\begin{aligned}
& u_{0}=\operatorname{lerp}\left(s, u_{00}, u_{10}\right) \\
& u_{1}=\operatorname{lerp}\left(s, u_{01}, u_{11}\right)
\end{aligned}
$$

Bilinear filtering

$$
\begin{aligned}
& \text { Linear interpolation (1D) } \\
& \operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
\end{aligned}
$$

Two helper lerps

$$
\begin{aligned}
& u_{0}=\operatorname{lerp}\left(s, u_{00}, u_{10}\right) \\
& u_{1}=\operatorname{lerp}\left(s, u_{01}, u_{11}\right)
\end{aligned}
$$

Final vertical lerp, to get result: $f(x, y)=\operatorname{lerp}\left(t, u_{0}, u_{1}\right)$

Bilinear interpolation

Q about bi-linear interpolation

What is the value at point A ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) Don't know

Umm.. So how do I use this on triangles?

Bilinear interpolation

Consider sampling color(\mathbf{x}, y)

What is the triangle's color at the point x ?

Interpolation via barycentric coordinates

Barycentric coordinates as scaled distances

Barycentric coordinates as ratio of areas

Barycentric Coordinates

Linear Interpolation

- Pick points along line: $\mathbf{p}(u)=(1-u) \mathbf{p}_{0}+u \mathbf{p}_{1}$

Barycentric Coordinates

- Points in a triangle satisfy the following equation:

$$
\mathbf{p}=\alpha \mathbf{p}_{0}+\beta \mathbf{p}_{1}+\gamma \mathbf{p}_{2} \quad \text { where } \quad \alpha+\beta+\gamma=1
$$

- Coefficients are area ratios:

$$
\begin{aligned}
\alpha & =\frac{\operatorname{Area}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}\right)}{\operatorname{Area}\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)} \quad \beta=\frac{\operatorname{Area}\left(\mathbf{p}_{0}, \mathbf{p}_{2}, \mathbf{p}\right)}{\operatorname{Area}\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)} \\
\gamma & =\frac{\operatorname{Area}\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}\right)}{\operatorname{Area}\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)}=1-\alpha-\beta
\end{aligned}
$$

Non triangle modeling

Some Non-Polygonal Modeling Tools

Splines and patches

Definition: What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

Interpolation

Interpolation Curves / Splines

www.abm.org

Linear Interpolation

- Simplest "curve" between two points

Spline Basis
Functions
a.k.a. Blending

Functions

$$
Q(t)=\left(\begin{array}{l}
Q_{x}(t) \\
Q_{y}(t) \\
Q_{z}(t)
\end{array}\right)=\left(\left(P_{0}\right)\left(P_{1}\right)\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)\binom{t}{1}
$$

$Q(t)=\mathbf{G B T}(\mathbf{t})=$ Geometry $\mathbf{G} \cdot$ Spline Basis $\mathbf{B} \cdot$ Power Basis $\mathbf{T}(\mathbf{t})$

Cubic Bézier Curve

- 4 control points
- Curve passes through first \& last control point
- Curve is tangent at $\mathbf{P}_{\mathbf{0}}$ to $\left(\mathbf{P}_{\mathbf{0}}-\mathbf{P}_{\mathbf{1}}\right)$ and at $\mathbf{P}_{\mathbf{4}}$ to $\left(\mathbf{P}_{\mathbf{4}}-\mathbf{P}_{\mathbf{3}}\right)$

A Bézier curve is bounded by the convex hull of its control points.

Cubic Bézier Curve

- \mathbf{P}_{3}

$$
Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}
$$

$$
Q(t)=\mathbf{G B T}(\mathbf{t}) \quad B_{\text {Bezier }}=\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Bernstein
Polynomials

$$
B_{1}(t)=(1-t)^{3} ; B_{2}(t)=3 t(1-t)^{2} ; B_{3}(t)=3 t^{2}(1-t) ; B_{4}(t)=t^{3}
$$

Cubic BSplines

- ≥ 4 control points
- Locally cubic
- Curve is not constrained to pass through any control points

A BSpline curve is also bounded by the convex hull of its control points.

Cubic BSplines

$$
Q(t)=\frac{(1-t)^{3}}{6} P_{i-3}+\frac{3^{3}-t^{2}+4}{6} P_{i-2}+\frac{-3 t^{3}+3 t^{2}+3 t+1}{6} P_{i-1}+\frac{t^{3}}{6} P_{i}
$$

$$
Q(t)=\mathbf{G B T}(\mathbf{t}) \quad B_{B-\text { Spline }}=\frac{1}{6}\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 0 & 4 \\
-3 & 3 & 3 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Bézier is not the same as BSpline

Bézier

BSpline

Bézier is not the same as BSpline

- Relationship to the control points is different

Bézier

BSpline

MIT EECS 6.837, Durand and Cutler

NURBS (generalized BSplines)

- BSpline: uniform cubic BSpline
- NURBS: Non-Uniform Rational BSpline
- non-uniform = different spacing between the blending functions, a.k.a. knots
- rational $=$ ratio of polynomials (instead of cubic)

Bicubic Bezier Patch

Notation: $\mathbf{C B}\left(P_{1}, P_{2}, P_{3}, P_{4}, \alpha\right)$ is Bézier curve with control points P_{i} evaluated at α

Define "Tensor-product" Bézier surface

$$
Q(s, t)=\mathbf{C B}\left(\begin{array}{l}
\mathrm{CB}\left(P_{00}, P_{01}, P_{02}, P_{03}, t\right), \\
\\
\mathbf{C B}\left(P_{10}, P_{11}, P_{12}, P_{13}, t\right), \\
\\
\mathbf{C B}\left(P_{20}, P_{21}, P_{22}, P_{23}, t\right), \\
\\
\mathbf{C B}\left(P_{30}, P_{31}, P_{32}, P_{33}, t\right), \\
\end{array}\right.
$$

(a)

(b)

Editing Bicubic Bezier Patches

Curve Basis Functions

Surface Basis Functions

Modeling with Bicubic Bezier Patches

- Original Teapot specified with Bezier Patches

(a)

(b)

MIT EECS 6.837, Durand and Cutler

Administrative

Due Dates

- Due Monday
- HW 1
- Lab Assignment 0
- Tuesday: NO ZOOM (watch videos)
- Due Wed
- Quiz 1 (open until Wed)
- Due the following Monday
- Assignment 1 (Paint Program)

Assignment 1 (watch videos)

Clear Canvas
Drawing Mode:
Squares Triangles Circles
Shape Color:
Red Green

Check Piazza for Announcements

Q\&A

End

