The Camera - CSE160 — Nov 5

e History of Projection

e View Transform

e Projection Transform

e Clipping and Screen Transform
e Graphics vs Real Cameras

e Administrative

e Q&A

A OpenGL ModelView Matrix

History of projection

Perspective projection

Stanford (5248, Winter 2020

Early pamtmg mcorrect perspectlve

g
-:'-—..a:.‘__

(arolmglan pamtmg from the 8- 9th century Stanford (5248, Winter 2020

Perspective in art

Giotto 1290

Stanford (52248, Winter 2020

History of projection

e Later Renaissance: perspective formalized precisely

da Vinci c. 1498

Later... rejection of proper perspective projection

Stanford (5248, Winter 2020

Correct perspective in computer graphics

Stanford (5248, Winter 2020

Stanford (5248, Winter 2020

W
-
i

=1

(4~}

S

N

T

D
P’

-

(=

=

(=

J
=

Ive

ion of perspect

Reject

r/r //,,L,r / G

00000006060000000

Computer graphics works like this

‘Basis OF Perspective — Lines Of Sight Through A Picture Plane = [19]

* The concept of the picture plane may be better understood by looking through a window or other transparent plane
~froma fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subjeot, will

all intersect this plane. Therefore, if you were to reach out with a grease pencil and draw the image of the subject
* on this plane you would be “tracing out” the infinite number of points of intersection of sight rays and plane. The

result would be that you would have “transferred” a real three-dimensional object to a h;.'o-dimer}sional-' plane. 3
< : : 3 i

[CS 417 Spring 2002]

View Transform

Transformations: from objects to the screen

[WORLD COORDINATES]

<

£ i

L g

original description

[VIEW COORDINATES] [CLIP COORDINATES]

(1,1,1)

view

projection
transform i

transform
17

(-1-1,-1)

everything visible to the

=
\
1

X

i =

i

vertex positions now expressed

of objects relative to camera; camera is sitting camera is mapped to unit
< at origin looking down -z direction cube for easy “clipping”
b.\ec\,‘a 2 (can canonicalize projection matrix)
you*©
g0 "
net© [WINDOW COORDINATES]
e screen
primitives are now 2D « — Trastum

and can be drawn via
rasterization

(0,0
objects now in

2D screen coordinates
Stanford (5248, Winter 2020

Jovan Popovic at MIT

Viewing transformation

zﬁﬁ
the view matrix rewrites all world coordinates in view coordinates (eye space)

[Cornell]

Viewing transformation

T
the view matrix rewrites all world coordinates in view coordinates (eye space)

[Cornell]

A <

"
y,

gluLookAt()

|

View
Matrix

OpenGL camera is always at origin and facing to -Z in eye space

Pasition (00,00 00)

Rctéﬁnﬂ'\@.m 00 0.0)
-\-H-"‘"-._H‘-

T,

T,
.,

(this is animated GIF)

http://www.songho.ca/opengl/gl camera.html

http://www.songho.ca/opengl/gl_camera.html

void gluLookAt(

GLdouble eyeX , GLdouble eyeY , GLdouble eyeZ ,
GLdouble centerX , GLdouble centerY , GLdouble center” ,
GLdouble upX , GLdouble upY , GLdouble upZ

);

A
{a&!uﬁ;atj

glMatrixMode(GL MODELVIEW); VP UPy, UP,) o wﬁf—?%’ j
glLoadldentity(); - =® | X
gluLookAt(I~ / | 2

0.0, 0.0, 5.0, \ ”

0.0, 0.0, 0.0, .’ P

0.0, 1.0, 0.0); JT leve,. eye,, eye,)

What does gluLookAt() do?

- gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx,
upy, upz) is equivalent to
gl MultM atrixf(M); /! post-multiply M with current model-view matrix
glTranslated(-eyex, -eyey, -eyez);

u, u, u, 0]

Where M= |v, v, v. 0| .
n, n, n. 0)
0 0 0 1] Mo

u, n, v are unit vectors.

LookAt(eye, at, up) — Changing EYE

Waorld-space view

Command manipulation window

SCIEBN-Space Yiew

fovy aspect zNear zFar

gluPerspective(60.0
gluLookAt(0.00
0.00

0.00

. 1.00

. 0.00

3

. 0.00

. 1.00

, 1.0 ,10.0 };
,2.00 |, <-eye

, 0.00 , «-center

, 000), <-up

LookAt(eye, at, up) — Changing AT

Waorld-space view SCIEBN-Space Yiew

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ,10.0

gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 , r.rg*: , 0.00 , «-center

0.00 ,1.00 ,0.00); <-up

LookAt(eye, at, up) — Changing UP

Waorld-space view SCIEBN-Space Yiew

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ,10.0
gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 ,000 ,000 , «-center

, 1.00 ,0.00); <-up

o

gluLookAt(0,0,14, I/ eye (x.y.z)
0,0,0, Il at (x.y,z)
0,10 Hup(xy.2)

Same as the glTransiatef{0,0.-14) as expected

gluLookAt(1,2.9,11, [/ eye (x.y,Z)
0,0,0, Il at (x,y,Z)
0,1,0); Il up (x,y.2)

Similar to original, but just a little off angle
due to slightly perturbed eye vector

Mark Kilgard — CS354 UT

C5 354 31

“Look At” Major Eye Changes

gluLookAt(-2.5,11,1, // eye (x.y.z)
0.0.0, Il at (x,y.z)
0,10y, /up(xyz)

Eye is "above” the scene

gluLookAt(-2.5,-11,1, // eye (x,v.Z)
0.0,0, /I at (x,y,z)
0,1,0); /up(xy.z)

Eve is ‘below” the scene

C5 354

“Look At” Changes to AT and UP

gluLookAt(0,0,14, Il eye (x,y.2)
2.“3.{]. .I'II'l n:ﬂ {X,}l‘lf_f}
0,1,0); Il up (x.y,2)

Orginal eye position, but “at” position shifted

gluLookAt(0,0,14, Il eye (x,v,2)
0,0,0, Il at (x,y,2)
1,1,0); /lup (x,y,2)

Eye is ‘below” the scene

http://www.songho.ca/opengl/gl camera.html

%% OpenGL Orbit Camera

3rd Person View

Angles (degree)

Pitch (X) |
Yaw (V) |]
Ral @) |]

Camera Position

0

|0{] Show Grid W|showFOV Vertical FOV (degree):

Point of View

Camera Target

X U
Y D
z D

0.0

0.0

0.0

Camera Matrix (column-major)

1000 0000 0000 -0.000
0.000 L000 0.000 -0.000
0.000 0000 1000 -5.000
0.000 0000 0.000 1000

Camera Quaternion: (5, , ¥, 2)

1000 0000 0000 0.000

World-space view

Command manipulation window

GLfloat pos[4] = { 1.50 , 1. ,1.00

gluLookAt(0.00 , 0. ,2.00 ,
0.00 ,000 ,0.00 ,
0.00 ,1. ,0.00)

glLightfv(GL_LIGHTO, GL_POSITION, pos);

Screen-space view

,0.00 }

<- up

<- eye

<- center

Click on the arguments and move the mouse to modify values.

https://user.xmission.com/~nate/tutors.html

World-space view

Corimand manipulation windou
glTranslatef(0.00
glRotatef(0.0
glScalef(1.00

glBegin(...);

Click on the arguments and move the mouse to modify values.

, 0.00
, 0.00
,1.00

Screen-space view

,0.00);
,1.00,0.00);
,1.00);

https://user.xmission.com/%7Enate/tutors.html
http://www.songho.ca/opengl/gl_camera.html

HZ OpenGL ModelView Matrix

Rotation

1.00

1,00

1.00 -10.00

1.00

1.00

Model Matrix

1.00

1.00

% Modelview Mat

1.00

e

1.00 0,00 0,00

0.00 1.00 -10.00

0.00 0.00 1.00

Camera) Model View Model Matrix o v Matrix

W - _ 1.00 Q.00 0,00 Q.00 1.00 0.00 0,00 Q.00 1.00 0.00 0,00
Position ¥ 0,00 100 0,00 Q.00) 0.00 1,00 0,00 0,00 0,00 1.00 0,00

0,00 Q.00 1,00 Q.00 0.00 0,00 1.00 0,00 0,00 0.00 1.00

0.00 0.00 0.00 . 0.00 0.00 0.00 1.00 0.00 0.00 0.00

for View (OpenGL

LI E F'|t|:h_ R ¥

glTranslat

t Model

Participation Survey

e http://tiny.cc/160-1105

Participation May 5
Form description

This form is automatically collecting email addresses for UC Santa Cruz users. Change settings

| was in class May &
Yes

Mo

0-1 hours
1-2 hours
2-4 hours

4+ hours

There are videos from Lucas introducing Labs (® Muhtiple chaice

| didr't watch it, | just started the assignment
| watched it, but its MOT helpful
| watched it, and it I3 helpful

Other..

|_|:| E Required

There are videos from James introducing

| didr't watch them, | just started the assignment

Projection Transform

Transformations: from objects to the screen

[WORLD COORDINATES]

<

£ i

original description
of objects

primitives are now 2D
and can be drawn via
rasterization

| —p

[VIEW COORDINATES] [CLIP COORDINATES]

(1,1,1)

view
transform

projection
transform

L’* T

(-1,-1,-1)
everything visible to the
camera is mapped to unit
cube for easy “clipping”

ﬁ/ﬁ:

il

vertex positions now expressed
relative to camera; camera is sitting
at origin looking down -z direction
(can canonicalize projection matrix)

X

[WINDOW COORDINATES]
P screen
l transform
|
(0,0)
objects now in
2D screen coordinates

Stanford (5248, Winter 2020

Parallel projection

e Viewing rays are parallel rather than diverging

— like a perspective camera that’s far away

o
-

r = =
4 gl

e Pf(‘.‘atch*;-ﬂ- Fﬂr"*”e (

i
{-W'IE{‘- 4"5“*) (“‘NM‘P‘. (.w{';n;H u‘,rw‘ir)

| Projections =N oR >

& www.scratchapixel.com

perspective projection orthographic projection

Parallel projection: orthographic

to implement orthographic, just toss out z:

Cornell C5465 Fall 2004 = Lecture 10

projection

T
Y

]

plane

4

=

iv,Lh

o O =
o O
e I e B e

o1 [*
o |7
1_ _1_

i 2004 Steve Marschner = 15

| i
@ Trqnsfpmag 'fq ;'!?Tf.‘rrvqr_}}_ _'l .- +l ;

Basic perspective projection

i Input point in 3D-H: x= | %, %, 1

Pinhole
Camera
(0,0)

—_ = O O

e I oo S aoe Y
O = O
s R o Y e R s

Assumption:

Pinhole camera at (0,0) looking down z
Stanford (5248, Winter 2020

Perspective vs. orthographic projection

m Most basic version of perspective matrix:

I 1
OO0 =

m Most basic version of orthographic matrix:

I 1
oo o=

OO

o OO

0
0
1
1

o= OO0

o O O O
L]

o R emmo [o
L]

S N R

1 1
—_ N =
1]

NN R

1 1
_ N e R
1]

objects shrink
$ in distance
— .

—

- 1 =

objects stay the
same size

Stanford (5248, Winter 2020

View frustum

View frustum is the region of space the camera can see:

Pinhole
Camera
(0,0)

-zfar

- Top/bottom/left/right planes correspond to sides of screen
- Near/far planes correspond to closest/furthest thing we want to draw

Stanford (5248, Winter 2020

Mapping frustum to normalized cube

Before moving to 2D, map corners of view frustum to corners of cube: X4

1

(140 " ®

-Znear Lo o &

-zfar

View frustum corresponding to pinhole camera
(perspective projection transform transforms this volume to normalized cube)

Why do we map frustum to unit cube?
1. Makes clipping much easier! (see next slide)
- Can quickly discard geometry outside range [-1,1]
2. Represent all vertices in normalized cube in fixed point math

* Question: what does the frustum of an orthographic camera look like?

X6

Stanford (5248, Winter 2020

Matrix for perspective transform

Takes into account geometry of view frustum:

Z
X
= 0 0 0 \
0 = 0 0 left (I), right (r), top (t), bottom (b), near (n), far (f)
0 0 —Srf_ J;'”') = 2’_{ i (matrix at left is perspective projection for frustum
| | that is symmetric about x,y axes: |=-r, t=-b)

\0 0 -1 0)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html Stanford CS248, Winter 2020

[Marschner]

o Bgfore‘

[Levoy]

T zl

© /Vaﬁ? CamFJfﬁjidn of -:jFIiJ lines in 7 q’ 5{}_{ z’,

gluPerspective

gluPerspective(double fovy, double aspect, double zNear, double zFar)

near

A
Y

far

Perspective(fovy, aspect, zNear, zFar) — Changing FOVY

Waorld-space view SCIEBN-Space Yiew

Command manipulation window

fovy aspect zNear zFar
gluPerspective(50*0 ,1.00 ,1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 ,000 ,000 , «-center

0.00 ,1.00 ,0.00); <-up

Perspective(fovy, aspect, zNear, zFar) — Changing ASPECT

Waorld-space view SCIEBN-Space Yiew

Command manipulation window

fovy zNear zFar
gluPerspective(60.0 |, , 1.0 ,10.0 };
gluLookAt(0.00 ,2.00 , <-eye

0.00 ,0. , 0.00 , «-center

0.00 , 1. , 000), <-up

Perspective(fovy, aspect, zNear, zFar) — Changing NEAR

SCIEBN-Space Yiew

Waorld-space view

Command manipulation window
fovy aspect zNear zFar

gluPerspective(60.0 , 1.00 |, A , 10,0);

gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 ,000 ,000 , «-center

0.00 ,1.00 ,0.00); <-up

Perspective(fovy, aspect, zNear, zFar) — Changing FAR

Waorld-space view SCIEBN-Space Yiew

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ORE)i
gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 ,000 ,000 , «-center

0.00 ,1.00 ,0.00); <-up

FOV

Near Plane
Clipping
Example

& Meshlab_64bit v13.3 - [Project_
8| File | E lters Render

DF &> @

FOV: 69.6001 Mesh: PLY_bun_bin_ply
FPS: 885 Vertices: 35947

Faces: 69451

Near Plane
Clipping
Example

FOV: 69.6001 Mesh: PLY_bun_bin.ply
FPS: 654 Vertices: 35947
Faces: 69451

Near Plane
Clipping
Example

FOV: 69.6001 Mesh: PLY_bun_bin_ ply
FPS. 758 Vertices: 35947
Faces: 69451

Qb actival Talk to the WYillagers C32/5123

Near plane clipping | 13

of villagers head i?

- 1 16
Z-fighting :
rurse; =6 E

+ Ok jective 9

Talk to the Willagers 4

C3S120 %

WL hypixel.net 1

186 180 1868.188% Mana

[WIF] Hitle=s=! enchanted cobblestone C:642 on my ah 2 minutes left, cheap
[HVWF+] ItHistas: Selling Stack OF FURFLE CAMHDYT OH ma Ak S88 Clin= 15 HIM

l=ft i gy

TheFhE3nix cheap Lagpis blocks in mg ah ending =oon

Qb _actival Talk to the WYillagers C32/5123

ahTBLOCK
B=r09,,28

Spring Sth
aakam
& Millage
Fur=se: 26
+ Ok jective
Talk to the Villagers
35120

Wl hiypixelnet

1868.180% Mana

Saved screanshot 55 2020-82-89_ 173724009 g i o
lxzg was killed by S3uen Fackmasier, 0 "o o

| '11| |3;éi& s I L .

Qb actival Talk to the Yillagers C32/5123

ahTBLOCK
H=ra9,28

Spring Sth

EHEEETY

& Millage
Fur=se: 26

+ Ok jective
Talk to the Villagers
35120

W hiypixelnet

1868.180% Mana

Lxzy was=s killed by Suwen Fackmaster,
Saved scresnshot 5= Z020-82-89_ 17.37.30,009 b
[WIF] Toonsoockaft: selling maxed out aotd with crit & parta ne it interested 0 "o o

| '11| |3;éi& 2 |®

Qb actival Talk to the WYillagers C32/5123

ahTBLOCK
H=/a9,28

Spring Sth

A1ham

& Millage
Fur=se: 26

+ Ok jective
Talk to the Villagers
C3/120

W hiypixelnet

1868.180% Mana

Saved Ecr*eenshc-t .55 ZE2A-a2-89_ 173738000 g o
[HMVYF] azuru_el_medor sellng denonic Sword on reg akll 0 "o o

| '11| |3;éi& e L

Qb actival Talk to the WYillagers C32/5123

ahTBLOCK
B=/a9,,28

Spring Sth
A18am
& Millage

Fur=se: 26

+ Ok jective
Talk to the Villagers
C3/120

W hiypixelnet

1868.180% Mana

[WIF] Toonsoockaft: selling maxed out aotd with crit & party ne it interaestad

Saved scresnshot as ZEZE-B2-89 173738009

[MVYF] azuru_sl_medord Sellng denonic Sword on g skl b
Saved szcresnshot as ZE2E-B2-89 17378009 o

| '11| |3;éi& 2 I+

More detailed aside: why near/far plane clipping?

® Primitives (e.g., triangles) may have vertices both in front and behind camera!
(Causes headaches for rasterization, e.g., checking if fragments are behind camera

® Avoid divide by zero in perspective divide (near plane clipping)
m Also important for dealing with finite precision of depth buffer

near =10+
far=10°

near =101
far=103

|||1|||}||1|1|1}

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection

“I-fighting”

Stanford (5248, Winter 2020

Perspective Frustum

2n r+1i
t (* =i,) 0 _— 0
’,
0 2n t+b 0
i = [f_fn 2fn
(1*f/n,b*i/m,0) 0 0 —
—-n -n
L O 0 -1 0
N f+n
W . S|
1;12} f-n
i 2fn
gliFrustum(float 1, £, b, t, a, f); 11m~f——=..2n
f—-)cn ! -

€5248 Fall 98 Lecture 14 Copyright © Pat Hanrohan

Do we ever want the frustum to be non symmetric for left/right?

Projection Type Projection Parameters Projection Matrix

erspective of . 0.00 0.00 0.00

(") orthographic Right

2.00 0.00 0.00
Bottom
Rendering Mode 0.00 q , ~ ~ —(f+n)
N f—n
0.00 -1.00 0.00
—1

Reset Parameters

(the red line shows exactly where the camera Is almed)

FUJIRYE 13 FI
[B B O B BN BN B B AN

FLJI Ry P 13
111001

FLLII RWF FIIIIHF
llllllllllll

=

13
innnnn

FUJI RYP
| |

llllllllllllllllllll
M7 12 13 130

(the yeol fine shows exgctiy where the camerg iz almed)

FLLILR 13 FLJI RYE
llllllllllll..

FUJI RYP 13
1110kl

Image 3: Correct Perspective with Shift Lens

- E B

left
eye
separation
L)

left

eye
separation

|

right

Projection
planes
(screen)

R

Projection
plane

(screen)

Oblique Perspective Projection

Clipping and Screen
Transform

Transformations: from objects to the screen

[WORLD COORDINATES]

<

£ i

original description
of objects

primitives are now 2D
and can be drawn via
rasterization

| —p

[VIEW COORDINATES] [CLIP COORDINATES]

(1,1,1)

view
transform

projection
transform

L’* T

(-1,-1,-1)
everything visible to the
camera is mapped to unit
cube for easy “clipping”

ﬁ/ﬁ:

il

vertex positions now expressed
relative to camera; camera is sitting
at origin looking down -z direction
(can canonicalize projection matrix)

X

[WINDOW COORDINATES]
P screen
l transform
|
(0,0)
objects now in
2D screen coordinates

Stanford (5248, Winter 2020

Clipping

® “Clipping” is the process of eliminating triangles that aren’t visible from the camera
(because they outside the view frustum)

Don’t waste time computing appearance of primitives the camera can't see!
Sample-in-triangle tests are expensive (“fine granularity” visibility)

Makes more sense to toss out entire primitives (“coarse granularity”)

Must deal with primitives that are partially clipped...

from: https://paroj.github.io/gltut/

Stanford (5248, Winter 2020

Clipping in normalized device coordinates (ND()

® Discard triangles that lie complete outside the normalized cube (culling)
- They are off screen, don’t bother processing them further

m (lip triangles that extend beyond the cube... to the sides of the cube
- Note: clipping may create more triangles

4 . y

X4

X1
{'1 171) . X5

.‘-..'.._-' x ".-'._-...
N V X6 X2 ¢ X6
|}

Triangles before clipping Triangles after clipping
*These figures are correct: OpenGL normalized device coordinates is left-handed coordinate space Stanford (5248, Winter 2020

Review: screen transform

After divide, coordinates in [-1,1] have to be “stretched” to fit the screen
Example:

All points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space: Screen (W x H output image) coordinate space:
4 0,0 w
) (1,1) (0,0) .

°, °
DY) >

1 H
¥ (W,H)

Step 1: reflect about x-axis ¥

Step 2: translate by (1,1)
Step 3:scale by (W/2,H/2)

Stanford (5248, Winter 2020

WebGL

Listing 7.8 PerspectiveView.js

1l /f PerspectiveView.js
2 Jf Vertex shader program
3 wvar VSHADER_SOURCE =

4 'attribute wecd a Positionm;\n' + ‘x‘\
5 'attribute vecd a_Color;\n' + \N\a

['uniform matd u_ViewMatrix;\n' + ode

) 'uniform mat4 u_ProjMatrix;\n' + N\

] 'varying wvecd v Colo Wi

9 ' g = miul \o' o+

10 = u_ProjMatrix * u ViewMatrix * a_Positiom;‘\n' +

11 g Color;\n" +

12 '

24 function main() |

.. AR c\aSS
41 S/ Set the vertex coordinates and color (blue triangle is in front) N\a‘x\
43 var n = lnitVertexBuffers(gl); va“‘ o“
51 /{ Get the storage locations of u ViewMatrix and u ProjMatrix
52 varu_ViewMatrix = gl.getUniformLocation (gl.program, "u_ViewM
53 var u_ProjMatrix = gl.getUniformbLocation(gl.progr ojMatrix") ;
59 var viewMatrix = new Matrixd();
60 var projMatrix = new Matrixd4(); // The projection matrix
6l
62 J/ Calculate the view and projection matrix
61 wviewMatrix.setLookAt (D, 0, 5, 0, 0, -100, 0, 1, 0); <+ SetLookAt(eye, at, up)

a4 projMatrix.setPerspective (30, canvas.width/canvas.height, 1, 100); <G —
65 S/ Pass The view matrix and projection matrix to u ViewMatrix and u ProjMatrix
EE gl.uniformMatrixdfv(u_ViewMatrix, false, viewMatrix.elements); fa r)
&7 gl.uniformMatrix4fv(u ProjMatrix, false, projMatrix.elements);

setPerspective(fov, aspect, near,

72 JJ Draw the rectanglas

73 gl.drawhArrays (gl .TRIANCLES, 0, n);
74 }

75

Graphics vs Real Cameras

Lenses
CSAIL 24mm

18° 135 mm

-
- —

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

CSAIL Perspective vs. viewpoint

* Focal lens does NOT ONLY change subject size
« Same size by moving the viewpoint
« Different perspective (e.g. background)

Frédo Durand — MIT Computer ScienconaPshot-Perspective-Speed, aperture-Hilter-Lighting-Processing & Print-Make up-Retouching

CSAIL Perspective vs. viewpoint

* Portrait: distortion with wide angle
 Why?

Wide angle Standard Telephoto

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

= Exposure

 Two main parameters:
— Aperture (in f stop)

Full aperture Medium aperture Stopped down

— Shutter speed (in fraction of a second)

A D O -
. t -
= — &
Blade (closing) Blade (open) Focal plane (closed) Focal plane (open)

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

el Pinhole limit

(B)
(A)

218 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images
of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole
is relatively large, the image rays are not properly converged, and the image is blurred.
(B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the
pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

Administrative

Due Dates

* Due next Monday
— HW 3 (Color Texture)

Assignment 3

Assignment 3

Contest (Pick one to enter)

Best world (coded)

- Has the most interesting world to explore, possibly including extra
elements beyond a simple block map, and certainly interesting
textures on objects.

Best world (building interface)

- Smoothest interface that lets the user actually use your tool to build
a small world. (Think mini-minecraft, using whatever interface you
think is good)

Best story/fun/surprise/game

- Something happens in your world. There is a surprise someplace.
There is a puzzle to solve. There is a mini-game. There is a cat
chasing a mouse. ... Something that makes it interesting.

Best efficiency

- You have a large world with lots of objects, and still | can explore it
without lagging. (Previous record in the 20K blocks range)

Q&A

End

	The Camera - CSE160 – Nov 5
	Slide Number 2
	Slide Number 5
	Slide Number 6
	Slide Number 7
	History of projection
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Computer graphics works like this
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Viewing transformation
	Viewing transformation
	Slide Number 24
	Slide Number 25
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Participation Survey
	Slide Number 41
	Slide Number 42
	Parallel projection
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	FOV
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Lenses
	Perspective vs. viewpoint
	Perspective vs. viewpoint
	Exposure
	Pinhole limit
	Slide Number 109
	Due Dates
	Assignment 3
	Assignment 3
	Slide Number 113
	Slide Number 114

