Sampling Theory - CSE160 — Nov 24

e What aliasing looks like

e Sampling a function

e Reconstructing a function
e Supersampling

e Representing a function as sines and
cosines

e Filtering (frequency domain)
e Pre-filtering for anti-aliasing

e Convolution Theorem

e Administrative

e Q&A

e (last time ended 20 min early)



What aliasing looks like




What's wrong with this picture?

Jaggies!
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Jaggies (staircase pattern)
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tterns in imaging
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. . [Philip Greenspun]
1000 pixel width
Cornell CS465 Fall 2004 e Lecture 5 © 2004 Steve Marschner ¢ 11




[Philip Greenspun]

by dropping pixels gaussian filter

250 pixel width
Cornell CS465 Fall 2004 e Lecture 5 © 2004 Steve Marschner ¢ 12
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600ppi scan of a color halftone image

Cornell CS465 Fall 2004 e Lecture 5 © 2004 Steve Marschner o 14
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by dropping pixels gaussian filter

downsampling a high resolution scan

Cornell CS465 Fall 2004 e Lecture 5 © 2004 Steve Marschner ¢ 15




Sampling a function




Consider a 1D signal: f(x)

Jx)
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Sampling: taking measurements of a signal

Below: five measurements (“samples”) of f(x)

A

Stanford (5248, Winter 2020



Audio file: stores samples of a 1D signal

Audio is often sampled at 44.1 KHz

Amplitude

time

Stanford (5248, Winter 2020



Sampling a function

m Evaluating a function at a point is sampling the function’s value

m We can discretize a function by periodic sampling

for(int x = 0; x < xmax; x++)

output[x] = f£(x);

m Sampling is a core idea in graphics. In this class we’ll sample
time (1D), area (2D), angle (2D), volume (3D), etc...

Stanford (5248, Winter 2020



Reconstructing a function




Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

A
fx):

: " F(x4)

L4

£(x0) f(;}) ., ) ®-°£(x3)
”0: "ln, :
. : . i
X0 x1 X2 x3 x4
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Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

A

f(x4)

£(x0) f(x1) £(x2) ® f(x3)

X0 x1 X2 x3 x4

Stanford (5248, Winter 2020



Piecewise constant approximation

frecon(x) =value of sample closest to x
[recon(Xx) approximates f (x)

A
f lllllllllll '
FETTELLLLLLL V ..........
[ PR b - Py S PP - :
: . . is
X0 x1 X2 x3 x4
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Piecewise constant approximation

[recon(x) =value of sample closest to x
f recon(X) approxi mates f (x)

i J(x)

IIIIIIIIIIIIIIIIIIIIII

------------------------
--------------------

X0 x1 X2 x3 x4
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Piecewise linear approximation

Jrecon(x) =linear interpolation between values of two closest samples to x

J(x)

X0 x1 X2 x3 x4

Stanford (5248, Winter 2020



How can we represent the signal more accurately?

Sample signal more densely
(increase sampling rate)

X0 x1 X2 x3 x4 x5 X6 x7 X8

Stanford (5248, Winter 2020



More accurate reconstructions result from
denser sampling

A

X0 x1 X2 x3 x4 x5 X6 x7 X8

------ = reconstruction via nearest neighbor

-« = =reconstruction via linear interpolation
Stanford (5248, Winter 2020



() (d)

Fig. 14.8 Image. (a) Graphical primitives. (b) Mandrill. {c) Intensity plot of scan line « i1
(a). {d) Intensity plot of scan line a in {b). (Part d is courtesy of George Wolberqg,
Columbia University.)



620 The Quest for Visual Realism

W %f
Original

signal

l Sampling

L

l Reconstruction

Reconstructed M\/\/\/\M\J\/

signal

= Wil

Fig. 14.9 The original signal is sampled, and the samples are used to reconstruct the
signal. (Sampled 2D image is an approximation, since point samples have no area.)
(Courtesy of George Wolberg, Columbia University.)



Drawing a triangle by 2D sampling




Sample coverage at pixel centers
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Sample coverage at pixel centers

Stanford (5248, Winter 2020



So, if we send the display this sampled signal

Stanford (5248, Winter 2020



The display physically emits this signal

Given our simplified “square pixel” display assumption, we've
effectively performed a piecewise constant reconstruction

Stanford (5248, Winter 2020



Compare: the continuous triangle function

Stanford (5248, Winter 2020



Super-sampling




What's wrong with this picture?

Jaggies!

Stanford (5248, Winter 2020



Reminder: how can we represent a sampled
signal more accurately?

A

Sample signal more densely
(increase sampling rate)

X0 x1 X2 x3 x4 x5 X6 x7 X8

Stanford (5248, Winter 2020



Point sampling: one sample per pixel

//\
b
o




Supersampling: step 1
Take NxN samples in each pixel

(but... how do we use these samples to drive a display, since there are four times more samples
than display pixels!)

one
display

pixel

A
B

2x2 supersampling

Stanford (5248, Winter 2020



Supersampling: step 2

Average the NxN samples “inside” each pixel

P HHR
BRI

Averaging down

Stanford (5248, Winter 2020



Supersampling: step 2

Average the NxN samples “inside” each pixel

P HHR
BRI

Averaging down

Stanford (5248, Winter 2020



Supersampling: step 2

Average the NxN samples “inside” each pixel

/

6

AN
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Supersampling: result

This is the corresponding signal emitted by the display

25%

S50%

50%

50%

50%

Stanford (5248, Winter 2020



Point sampling

One sample per pixel

Stanford (5248, Winter 2020



4x4 supersampling + downsampling

i

Pixel value is average of 4x4 samples per pixel

Stanford (5248, Winter 2020



Representing functions as
sines and cosines




Sines and cosines
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Representing sound wave as a
superposition of frequencies

fl(x) =sin(ﬂ.x) \/\/\/\/\/\

f4(x) = sin(4mx)

Keep these
veights, instead
of the f(x)
samples

Jix) =10 fi(x) + 0.75 fo(x) + 0.5 fiu(x) /\\/\\/\J\\/\J\\/\J\\/\\ﬁ
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Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies

Intensity of The weights are here Intensity of
low-frequencies (bass) high frequencies

Image credit: ONYX Apps Stanford (5248, Winter 2020



How to compute frequency-domain
representation of a signal?

Stanford (5248, Winter 2020



Fourier transform

Represent a function as a weighted - S /F
sum of sines and cosines VIN b 1L N A
1 AR /F
~ ’ N

EFERN VAR 23 fa “1a 1a ™~ 23 = 25
Bl C T /(

P Patiih %N / \ S e
s X Sd a T 1w I
i M N JR L }/“"“ Y X‘
Joseph Fuie‘r 1768 - 1830 7@&@‘{ év“v,av‘vu

A 2Acos(tw) 2Acos(3tw) 2Acos(btw) 2A cos(Ttw)
==+ = + = T
2 yis 3 ST i
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Fourier transform

m (Convert representation of signal from primal domain (spatial/
temporal) to frequency domain by projecting signal into its

component frequencies Recall! | don’/tthink | took that class...
4
55 Recall:
F(w) = / fx)e ™™ dy e'" = cosx +isinx
— 00

= /oo f(x)(cos(2rwzx) — isin(2mwx) )dx

\

Ow! My head hurts!
m 2D form:

Flu,v) = / / F(@,)e 20w 0) dagy

Stanford (5248, Winter 2020



Fourier transform decomposes a signal into
its constituent frequencies

f(.ﬁl:') F(w) = /_C: f(z)e 2™ dy F(UJ)

r B r N
) — | Fourier transform |=— >
spatial N ) frequency
domain d ) domain
<+ Inverse transform <—
- V \_ V. \ VY
w .
f(x) :/ F(w)e*™ % du
— O
Fiu)| -
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Fig. 14.15 Signals in the spatial and frequency domains. (a)} Sine. (b) Square Wave.
ich Mandrill.  (Courtesy of George Wolberg, Columbia University.)
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Visualizing the frequency content of images

Visualization below is the 2D frequency
domain equivalent of the 1D audio
spectrum | showed you earlier *

Spatial domain result Spectrum

Stanford (5248, Winter 2020



Constant signal (in primal domain)

Spatial domain Frequency domain

Stanford (5248, Winter 2020



sin(27/32)x — frequency 1/32; 32 pixels per cycle

|||||||||||||||| B

Spatial domain Frequency domain

Stanford (5248, Winter 2020



Sin(27r / 16) 1 — frequency 1/16; 16 pixels per cycle

| Max signal freq =1/16

Spatial domain Frequency domain

Stanford (5248, Winter 2020



sin(27/16)y

Spatial domain Frequency domain

Stanford (5248, Winter 2020



sin(27/32)x x sin(27/16)y

Spatial domain Frequency domain



Spatial domain Frequency domain

Stanford (5248, Winter 2020



Spatial domain Frequency domain

Stanford (5248, Winter 2020



exp(—x*/32%) x exp(—y~/167)

Spatial domain Frequency domain




Rotate45 exp(—z~/32%) x exp(—y*/16%)

Spatial domain Frequency domain

Stanford (5248, Winter 2020



Participation Survey

e About the project plan
e https://forms.gle/uw13wwdYkzvRWYUV9

The plan for AS: Optional Team Project. If you skip, its a ® Multiple choice
no-op on your grade, but highest grade in the class if

you choose to skip it is B=. If you do it then must

present in class on final day and be graded by your

peers. Very high freedom in choosing what to work on:

new tech feature. nice rendering. game, etc

This works for me

don't like that some people can completely skip, its not fair.

don't like being evaluated by my peers, the graders are more fair,

| don't like high freedon, | prefer a precise grading rubric




Filtering (frequency domain)




Manipulating the frequency content of images

Spatial domain Frequency domain

Stanford (5248, Winter 2020



Low frequencies only (smooth gradients)

Spatial domain Frequency domain

(after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (5248, Winter 2020




Mid-range frequencies

Spatial domain Frequency domain
(after band-pass filter)

Stanford (5248, Winter 2020



Mid-range frequencies

Spatial domain Frequency domain
(after band-pass filter)

Stanford (5248, Winter 2020



High frequencies (edges)

Spatial domain Frequency domain

(strongest edges) (after high-pass filter)
All frequencies below threshold have 0

mag nitude Stanford (5248, Winter 2020




An image as a sum of its frequency components

Stanford (5248, Winter 2020



Pre-filtering for anti-aliasing




Back to our problem of artifacts in images

Jaggies!

Stanford (5248, Winter 2020



Higher frequencies need denser sampling

Periodic sampling locations

ool

Low-frequency signal:
sampled adequately for
reasonable reconstruction

High-frequency signal is
insufficiently sampled:
reconstruction incorrectly
<«+— appears to be from a low
frequency signal

"
ﬁ“gu

»
,,,,,,
,,,,,,,,,,
Ny
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Undersampling creates frequency “aliases”

AANANATIN
R VATRIATRVAY

High-frequency signal is insufficiently sampled: samples erroneously
appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are
called “aliases”

Stanford (5248, Winter 2020



Anti-aliasing idea: filter out high
frequencies before sampling



Rasterization: point sampling in 2D space

Sample o

Note jaggies in rasterized triangle
(pixel values are either red or white: sample is in or out of triangle)

Stanford (5248, Winter 2020



Rasterization: anti-aliased sampling

Pre-filter Sample

(remove frequencies above Nyquist limit)

Note anti-aliased edges of rasterized triangle:
where pixel values take intermediate values

Stanford (5248, Winter 2020



How much pre-filtering do we need to
avoid aliasing?

Stanford (5248, Winter 2020



‘Nyquist theorem

Theorem: We get no aliasing from frequencies in the signal that are
less than the Nyquist frequency

(which is defined as half the sampling frequency)

Consequence: sampling at twice the highest frequency in the signal will
eliminate aliasing

Stanford (5248, Winter 2020



example

Signal vs Nyquist frequency

; 32 pixels per cycle

2 — frequency 1/32
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jasing!
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Challenges of sampling-based approaches in graphics

m (Qursignals are not always band-limited in computer graphics.
Why?

Hint;




Convolution




Recall our anti-aliasing technique in the first
half of lecture

.........
.........
.........

Dense sampling of signal

Original signal
(high frequency edge)

Reconstructed signal Coarsely sampled signal
(after averaging over pixel)

Stanford (5248, Winter 2020



Convolution

sl (e [e]x
itr



Convolution

sl (e [e]x
itr

1x1 + 3x2 + 5x1 =12

reate [12] [ [ [ [ [ 1 ]1]]

Stanford (5248, Winter 2020



Convolution

s [EEEITELTE
Filter nn

3x1 +5x2 + 3x1 =16

Resutt[1216] | | | | | | |



Convolution

s [EEEITELTE
Filter E

5x1 + 3x2 +7x1 =18

Result [12]16]18] | | | | | |



Discrete 2D convolution

(f * Z fm (x — 4,y — j)

output image filter input image

Consider f(z ]) thatis nonzeroonlywhen: —1 < 72,7 <1
Then:

(f *9)(z,y) Z f@,)I(x—1i,y— j)

And we can represent f(i,j) as a 3x3 matrix of values where:

fli,j) =F;; (often called: “filter weights”, “filter kernel”)

Stanford (5248, Winter 2020



Box filter (used in a 2D convolution)

Example: 3x3 box filter

Stanford (5248, Winter 2020



2D convolution with box filter blurs the image

Original image Blurred
(convolve with box filter)

Hmm... this reminds me of a low-pass filter...

Stanford (5248, Winter 2020



Convolution Theorem




Convolution theorem

Convolution in the spatial domain is equal to multiplication in the
frequency domain, and vice versa

Spatial

Domain "’m:lve 4
Fourier l Inv. Fourier T
Transform Transform

Frequency

Domain

Stanford (5248, Winter 2020



Convolution theorem

m Convolution in the spatial domain is equal to multiplication in
the frequency domain, and vice versa

m Pre-filtering option 1:
- Filter by convolution in the spatial domain

m Pre-filtering option 2:
- Transform to frequency domain (Fourier transform)
= Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Stanford (5248, Winter 2020



Box function =“low pass” filter

Spatial domain Frequency domain

Stanford (5248, Winter 2020



Wider filter kernel = lower frequencies

Spatial domain Frequency domain

Stanford (5248, Winter 2020



How can we reduce aliasing error?

® [ncrease sampling rate (increase Nyquist frequency)
- Higher resolution displays, sensors, framebuffers...

- But: costly and may need very high resolution to
sufficiently reduce aliasing

® Anti-aliasing

- Simple idea: remove (or reduce) signal frequencies ahove
the Nyquist frequency before sampling

- How to filter out high frequencies before sampling?

Stanford (5248, Winter 2020
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Putting it all together:
anti-aliasing via supersampling

—p

e o ® o ® a8 g

® o © o o 0 o o
e o © o ©® @ g o
® o © © © o g o
©o © © © 0 0 o o

o ©o o o o © 0o o O

Dense sampling of signal
(supersampling)

Original signal
(with high frequency edge)

Reconstructed signal
(averaging over pixel (via convolution) yields
new signal with high frequencies removed)

Coarse sampling of
reconstructed signal exhibits
less aliasing Stanford (5248, Winter 2020



Why so complicated?




Convolution theorem

Convolution in the spatial domain is equal to multiplication in the
frequency domain, and vice versa

Spatial

Domain "’m:lve 4
Fourier l Inv. Fourier T
Transform Transform

Frequency

Domain

Stanford (5248, Winter 2020



Convolution theorem

Convolution in the spatial domain is equal to multiplication in the
frequency domain, and vice versa

Spatial JEE
Dp & : | * % T
Vi ‘convolve ] ‘
Fourier l Inv. Fourier T
Transform Transform
10,
Frequency il
Domain X o |
Ll e
\\/‘o‘z \v/
Sinc filter

Infinite extent High frequency not really gone



Point sampling
in action

£ 2004 Steve Marschner = 5




How do | get rid of the rest of these artifacts?

Go learn more about signal processing. It’s a major tool in your mental
| toolbox.

Box filtering
in action

© 2004 Steve Marschner = 11




Administrative




Due Dates

 Due Tomorrow
— Quiz4

* Due next Monday
— A4 (Lighting)



Q&A




End







Not using slides below this year






Roots of sampling

* Nyquist 1928; Shannon 1949

— famous results in information theory

1940s: first practical uses in telecommunications
1960s: first digital audio systems

1970s: commercialization of digital audio

1982: introduction of the Compact Disc

— the first high-profile consumer application
This is why all the terminology has a communications
or audio “flavor”

— early applications are |D; for us 2D (images) is important

Cornell C5465 Fall 2004 * Lecture 5 € 2004 Steve Marschner = 5



Sampling in digital audio

« Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound again

— how can we be sure we are filling in the gaps correctly?

ﬁ - A sU"*.fkﬁ JJ - .@ - Lh__r.l;Tﬂl_,er,.m.d — @
© - Livivr — fr] Wit ()
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What if our samples missed something important?

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum-
bia University.)



Spatial and Frequency Domain

iy . =1
L il S Ll

Spatial Domain Frequency Domain
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Convolution and multiplication

* They are dual to one another under F.T.

F{f*g}(u) = F(u)G(u)
F{fg}(u) = (F * G)(u)

* Lowpass filters

— Most of our “blurring” filters have most of their F.T. at low
frequencies

— Therefore they attenuate higher frequencies

Cornell C5465 Fall 2004 * Lecture & € 2004 Steve Marschner = 17



Filtering: Spatial Domain

Filtering

ATl 0
rHIE

Convolution of two functions
Wx)=f®g=f(y)g(x=ydy
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Filtering: Frequency Domain
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Low-Pass Filter

CETAN Foll ©8 Lachurs &

Blurred
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High-Pass Filter

gtndl Edge enhancement

C524E Foll ¥ Lecture & Cappright © Fod Hosben










Reconstruction: Frequency Domain

/\/\/\M __________
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Reconstruction: Spatial Domain
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Sampling and Reconstruction

A
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Sampling Theorem

This result if known as the Sampling Theorem and is

due to Claude Shannon who first discovered it in
1949

A signal can be reconstructed from its samples
without loss of information, if the original signal
has no frequencies above 1/2 the sampling
frequency

For a given bandlimited function, the rate at which it
must be sampled is called the Nyquist Frequency
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Undersampling: Aliasing
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“Aliases””




0

Rasterizing lines

+ Define line as a
rectangle

* Specify by two
endpoints

* ldeal image: black
inside, white outside

Cornell C5465 Spring 2004 = Lecture 7 & 1004 Steve Marschner = 3



@

Point sampling

« Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

* Problem: all-or-
nothing leads to
jaggies
— this is sampling

with no filter (aka.
point sampling)

Cornell C5465 Spring 2004 = Lecture 7 © 2004 Steve Marschnar s 4



Antialiasing

* Basic idea: replace
“is the image black
at the pixel center?”
with “how much is

pixel covered by
black?”

* Replace yes/no
question with
quantitative
question.

Cornell T5465 Spring 2004 * Lecture 7 © 2004 Steve Marschner = 8



BoXx filtering by supersampling

« Compute coverage
fraction by counting 715 dovired
subpixels el i

20025 covered

+ Simple, accurate 80% gra

* But slow

Cornell C5465 Spring 2004 * Lecture 7 © 2004 Steve Marschner » 10
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Weighted filtering by supersampling

« Compute filtering
integral by summing
filter values for
covered subpixels

 Simple, accurate

* But really slow

Cornell C5465 Spring 2004 = Lecture 7 © 2004 Steve Marschner = 13



Filter comparison

Point sampling Box filtering Gaussian filtering

Cornell C5465 Spring 2004 = Lecture 7 © 2004 Steve Marschner = 15



Antialiasing in ray tracing

aliased image

one sample per pixel

Cornell C5465 Spring 2004 * Lecture 7 © 2004 Steve Marschner = 19

Antialiasing in ray tracing

antialiased image
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four samples per pixel
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