Visibility - CSE160 — Nov 10

e Visibility Problem Statement
e Depth Buffer
e Compositing

e Back To Front: Painters
Algorithm and BSP Trees

e From Vertices to Frame Buffer

e Administrative
e Q&A

Visibility Problem Statement

Visibility

 How do we know which parts are visible/in
front?

MR

MIT EECS 6.837, Cutler and Durand 3

Occlusion: which triangle is visible at each

covered sample point?

50% transparent triangles

Opaque Triangles

Stanford (5248, Winter 2020

Depth Buffer

Depth buffer (aka ”Z buffer”)

Color buffer:

(stores color per sample...
e.g., RGB)

Depth buffer:
(stores depth per sample)

Stores depth of closest surface
drawn so far

black = close depth
white = far depth

Stanford (5248, Winter 2020

Depth buffer (a better look)

e s o o 1y SELARr ; : - Ao L R T AT o et - ¥ . S g $T%,
8 > = 3 > T SALE P s e B . [Ty o s o N T LA . e P B
7 . ; s - aN

Color buffer (stores color measurement per sample, eg., RGB value per sample)
Stanford (5248, Winter 2020

Depth buffer (a better look)

Corresponding depth buffer after rendering all triangles
(stores closest scene depth per sample) Stanford (5248, Winter 2020

Occlusion using the depth-buffer (“Z-buffer”)

For each coverage sample point, the depth-buffer stores depth of closest
triangle at this sample point that has been processed by the renderer so far.

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

o @] @) o @) ®) o @) @

Initial state of depth buffer =—p
before rendering any triangles
(all samples store farthest distance)

Grayscale value of sample point
used to indicate distance

Black = small distance O o o o o o) o o o)

White = large distance ©o o o o o o o o o

Stanford (5248, Winter 2020

Example: rendering three opaque triangles

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth =0.5

@] @) O]

O O O

Color buffer contents

O

O

O

O

)

o]

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

@) O
@) @)
o @)
@) @)
@) @)
O @
[] [
@) @)
O O

O

0

O

0

@) @] @)

O @] O

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

@] @) O]

O O O

Color buffer contents

O

O

O

O

)

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

@] O & = @ & @]
O O @ @ @ @ @)
O i P 8] @ @ o
@ @ [@ @ & @

@) @) O @) @) @] @)

O O O O O @] 0

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:

depth =0.75

O ® O
O O

O O o
O O o

Color buffer contents

@)

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O

O O O O 0] @] O

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

o ®)
O ®
@]
@]

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

0O

O

O

O

0

O

0

@ & @]
@ @ @)
@ @ o
@ @ @

@) @] @)

O O 0

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® @
O @
O ® @

O O O

Color buffer contents

@)

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O
@] O
O O
& @]
@ @)
@ o
o @ (] @ @ @ e

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

o ®)
O ®
@]
@]

O O O

Color buffer contents

O

O

O

O

)

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

0O

O

O

O

0

O

0

@) @] @)

O O 0

Depth buffer contents

Stanford (5248, Winter 2020

Occlusion using the depth buffer
(opaque surfaces)

bool pass_depth_test(dl, d2) {
return dl < d2;

}
depth_test(tri_d, tri_color, x, y) {
if (pass_depth_test(tri_d, depth_buffer[x]1[y]l) {

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.

depth_buffer[x][y] = tri_d; // update depth_buffer
color[x][y] = tri_color; // update color buffer

Stanford (5248, Winter 2020

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle ® ® & ° ®

Stanford (5248, Winter 2020

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Stanford (5248, Winter 2020

Does depth buffer work with super sampling?

Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

Stanford (5248, Winter 2020

Color buffer contents

Stanford (5248, Winter 2020

Color buffer contents (4 samples per pixel)

Stanford (5248, Winter 2020

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

Stanford (5248, Winter 2020

Summary: occlusion using a depth buffer

m Store one depth value per coverage sample (not per pixel!)

m (onstant space per sample
- Implication: constant space for depth buffer

m (Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a depth buffer read if “fail”

m Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

Stanford (5248, Winter 2020

What 1s the state of the Z-buffer after rendering this scene?
Z=0 1s near. Z=9 1s far.

97999 9
9 9/9/ 9 9
99/ 99 9
2299 9 A
1'2/9/9 9
999199 9
99/9 9 9
919199 9 B
221919 9
229 99
0 | 2 3 | g
00/ 0/ 0 O
There is a red square with corners at 000000
220 00
(1.0.1), 12000
(1,1, 1), R
(0,1, 1).
000/00 0
There is a green square with comers at 00/ 0o 0O
00/000 D
(0,0,2) 220 00
(2,0,2) 2200 0
(2,2,2) I

(0,2,2)

Compositing

Representing opacity as alpha

Alpha describes the opacity of an object
- Fully opaque surface: a =1

- 50% transparent surface: ¢ = 0.5

- Fully transparent surface: o =0

Red triangle with decreasing opacity

y vy W

a=1 a=0.75 a=0.5 a=0.25 a =0

Stanford (5248, Winter 2020

Alpha: coverage analogy

m (Can think of alpha as describing the opacity of a semi-
transparent surface

m Qr... as partial coverage by fully opaque object
- consider a screen door

(Squint at this slide and the scene on the left and the right will appear similar)

Stanford (5248, Winter 2020

Alpha: additional channel of image (rgba)

o of foreground object

Stanford (5248, Winter 2020

Over operator:

Composite image B with opacity oz over image A with opacity aa

AoverB '= BoverA
“Over” is not commutative

B overA A over B

Koala over NYC
Stanford (5248, Winter 2020

Over operator: non-premultiplied alpha

Composite image B with opacity «zg over image A with opacity aa

First attempt: (represent colors as 3-vectors, alpha separately)

T
A=[4, A, Ay .
4 B
B=|B. B; B
B overA
Appearance of semi-
= transparent A
Composited color: l
C=apB+ (1 —ap)asA B A
Appearanceof ~ What B lets through AoverB
semi-transparent B
AoverB != BoverA
Composite alpha: “Over” is not commutative

oo = ap + (1 —OzB)OzA

Stanford (5248, Winter 2020

Premultiplied alpha

m Represent (potentially transparent) color as a 4-vector where
RGB values have been premultiplied by alpha

A,:[O’.AA-F aaAy Ay CEA}T

Example: 50% opaque red
[0.5,0.0,0.0, 0.5]

Example: 75% opaque magenta
[0.75, 0.0, 0.75, 0.75]

Stanford (5248, Winter 2020

Over operator: using premultiplied alpha

Composite image B with opacity oz over image A with opacity a
Non-premultiplied alpha representation:

A=[A, A, A"

A
B=[B, B, By B
C=apB+ (1 —ap)agA <«—— two multiplies, one add B over A
(referring to vector ops on colors)
Composite alpha:
ac =ap+ (1 —ap)aa
Premultiplied alpha representation:
T Notice premultiplied alpha composites alpha

A,:[CXAA?- sy asdy ():__4]
]T

just like how it composites rgb.

B,:[CIBB.P apB, apBy ap

C'"=B+(1—ap)A < one multiply, one add

Stanford (5248, Winter 2020

Fringing

Poor treatment of color/alpha can yield dark “fringing”:

foreground alpha

fringin no fringin
ging ging Stanford (5248, Winter 2020

Stanford (5248, Winter 2020

/I

Fringing (...why does this happen?)

M Y =

S §
.

“ k .lg Stanford (5248, Winter 2020

A problem with non-premultiplied alpha

® Suppose we upsample an image w/ an alpha mask, then composite it onto a background
How should we compute the interpolated color/alpha values?

m |f weinterpolate color and alpha separately, then blend using the non-premultiplied
“over” operator, here’s what happens:

_ @

original original
color alpha

upsampled upsampled
color alpha

Notice black “fringe” that occurs because
we're blending, e.g., 50% blue pixels using
50% alpha, rather than, 100% blue pixels
with 50% alpha.

composited onto
yellow background Stanford (5248, Winter 2020

Eliminating fringe w/ premultiplied “over”

If we instead use the premultiplied “over” operation, we get the correct alpha:

upsampled color

(1-alpha) background

(1-alpha)*background

composite image
w/ no fringe

Stanford (5248, Winter 2020

Another problem with non-premultiplied alpha

Consider pre-filtering a texture with an alpha matte

Desired filtered result

input color input o filtered color filtered filtered result
Downsampling non-premultiplied alpha composited over white

image results in 50% opaque brown)

0.25%((0,1,0,1) +(0,1,0,1) + Result of filtering
(0,0,0,0)+(0,0,0,0)=(0,0.5,0,0.5) premultiplied image

Stanford (5248, Winter 2020

Common use of textures with alpha: foliage

o o

oo oo

%50
el

o} &) &) o

o
.6~
.,6‘
e}
0
o
ua-;

) O O x 0 G O

[Image credit: SpeedTree Cinema 8] Stanford (5248, Winter 2020

Foliage example

[Image credit: SpeedTree Cinema 8] Stanford (5248, Winter 2020

Another problem: applying “over” repeatedly

Consider composite image C with opacity ¢ over B with opacity oz over image A with
opacity o
A=[A, A, A"

- B A
B= B, By Bj
C=apB+ (1 —ap)asA ;
ac =ap+ (1 —ap)ag
Consider first step of of compositing 50% red over 50% red: CoverBoverh

T s : . -
C =1[0.75 0 0] Wait... this result is the premultiplied color!

ac = 0.75 So “over” for non-premultiplied alpha takes non-premultiplied colors to
premultiplied colors (“over” operation is not closed)

Cannot compose “over” operations on non-premultiplied values:
over(C, over(B, A))

There is a closed form for non-premultiplied alpha:
i = L(OcBB + (1 — (lB)OzAA)

aC
Stanford (5248, Winter 2020

Summary: advantages of premultiplied alpha

m Simple: compositing operation treats all channels (rgbh and a)
the same

® (losed under composition

m Better representation for filtering textures with alpha
channel

m More efficient than non-premultiplied representation: “over”
requires fewer math ops

Stanford (5248, Winter 2020

Color buffer update: semi-transparent surfaces

Assume: color buffer values and tri_color are represented with premultiplied alpha

over(cl, c2) {
return cl + (1-cl.a) *x c2;

}

update_color_buffer(tri_z, tri_color, x, y) {
// Note: no depth check, no depth buffer update
color[x][y] = over(tri_color, color[x][y]l);

}

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford (5248, Winter 2020

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles

Step 1: render opaque surfaces using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More

on this later in the course, and in (S348B
Stanford (5248, Winter 2020

Combining opaque and semi-transparent

triangles

Assume: color buffer values and tri_color are represented with premultiplied alpha

// phase 1: render opaque surfaces
update_color_buffer(tri_z, tri_color, x, y) {
if (pass_depth_test(tri_z, zbuffer[x][yl) {
color[x][y]l = tri_color;
zbuffer[x][y] = tri_z;
}
}

// phase 2: render semi-transparent surfaces
update_color_buffer(tri_z, tri_color, x, y) {

if (pass_depth_test(tri_z, zbuffer[x][y]) {
// Note: no depth buffer update
color[x][y] = over(tri_color, color[x][y]);

Stanford (5248, Winter 2020

Participation Survey

e http://tiny.cc/160-1110

Participation May 7
Form description

This form is automatically collecting email addresses for UC Santa Cruz users. Change settings

I was in class May 7
Yes

Mo

Mo really. Do you usually go to class?
Yes._ | listen to the whole lecture as my primary activity.
Yes._ But | check my email, play a game, or something else on screen during class
Yes, But | frequently walk away to do something else
Yes, But | watch the video afterwards, not live Zoom
Saort of, | mean to watch the video afterwards, but | only do it sometimes
Sort of, | come leng enough to find the participation survey, then I'm out of here
Mah, | get the survey link somehow and just make sure | did it
Mah, I'm wasn't even here

Other..

Do you ever look at the recorded Zoom video files?

Suggestions: Add all | Yes Mo Maybe
Yes_ Every time.
Yes, but only when | need to go back and check on something, like during HW
Nope

Other..

Back To Front: Painters
Algorithm and BSP Trees

Painter’s Algorithm

Draw surfaces from back (farthest away) to front (closest):
— Sort surfaces/polygons by their depth (z value)

— Draw objects in order (farthest to closest)

— Closer objects paint over the top of farther away objects

Painter’s algorithm

* Draw back-to-front | A
 How do we sort objects? \ &
« Can we always sort objects?

— No, there can be cycles
— Requires to split polygons /7

MIT EECS 6.837, Cutler and Durand

52

Worse, there 1s no single sort: ABCD?

A
(&

/. Camera moved : ABCD?
Resort every frame?

/&

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

Binary Space Partition (BSP) Tree gﬂ

* Recursively partition space by planes
o Every cell is a convex polyhedron

4 ~
i

Binary Space Partition (BSP) Tree pﬁj}

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

4 ~
i

Binary Space Partition (BSP) Tree pﬁj}

* Recursively partition space by planes
o Every cell is a convex polyhedron

4 ~
i

Binary Space Partition (BSP) Tree pﬁj}

* Recursively partition space by planes
o Every cell is a convex polyhedron

4 ~
i

Binary Space Partition (BSP) Tree pﬁj}

* Recursively partition space by planes
o Every cell is a convex polyhedron

Binary Space Partition (BSP) Tree gﬂ

* Recursively partition space by planes

> Every cell is a convex polyhedron ‘(e1

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

Drawing order: D,

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

©)
\ N

/
@ <4 &
"SUNAVAN

Drawing order: D, (EF)

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

Drawing order: D, E,

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

Drawing order: D, E, F

-

N
Binary Space Partition (BSP) Tree pﬁ%

* Recursively partition space by planes
o Every cell is a convex polyhedron

Drawing order: D, E,F, A, B, C

From Vertices to Frame Buffer

Command: draw these triangles!

Inputs:

list_of_positions = { list_of_texcoords
vOx, vOy, vez, vOu, vov,
vlx, vly, vix, vlu, vilv,
v2x, v2y, vz, v2u, v2v,
v3x, v3y, v3Xx, v3u, Vv3v,
va4x, v4y, vaz, v4u, viv,
v5x, v5y, v5x }; v5u, v5v };

Object-to-camera-space transform: I
Perspective projection transform P
Size of outputimage (W, H)

Use depth test /update depth buffer: YES!

{

Texture ma

Stanford (5248, Winter 2020

Step 1:

Transform triangle vertices into camera space
(apply modeling and camera transform)

Stanford (5248, Winter 2020

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

F
X4 X8
B 4
g1
Z -
(1.1,1),® x
7 < Y
X Pinhole ‘ X
Camera
(0,0) znear X3 & -~
Camera-space positions: 3D Normalized space positions

Note: I'm illustrating normalized 3D space after the
homogeneous divide, it is more accurate to think of
this volume in 3D-H space as defined by:

(-w, -w, -w, w) and (w, w, w, w)
Stanford (5248, Winter 2020

Step 3: clipping

Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don’t bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- Note: clipping may create more triangles

X4 - Xg
X7
(1,1,1) X7

) (1,1,1)

1
s X 5 X1
(_ ’ (-1 :'1 © 1) .‘.-". X5

X2 L]
X9 X6

Triangles before clipping Triangles after clipping

Stanford (5248, Winter 2020

Step 4: transform to screen coordinates

Transform vertex xy positions from normalized coordinates into
screen coordinates (based on screen w,h)

(w, h)

(0,0)

Stanford (5248, Winter 2020

Step 5: setup triangle (triangle preprocessing)

Compute triangle edge equations
Compute triangle attribute equations

Eo1(z,y) U(z,y)
Biz(z,y) V(z,y)
Eoo(z,y)

&(wa y)

Stanford (5248, Winter 2020

sample coverage

Step 6

Evaluate attributes z, u, v at all covered samples

Stanford (5248, Winter 2020

Step 6: compute triangle color at sample point

e.g., sample texture map *

@ @] ® @
u(x,y), v(x,y)

* So far, we've only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Later in the course, we'll discuss more advanced algorithms for computing its color based on material

properties and scene lighting conditions. .
Stanford (5248, Winter 2020

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

@
FAIL

®
FAIL

®
FAIL

2
FAIL

@
FAIL

2]
FAIL

PASS

k-3 @
PASS PASS
pASs PASS

e o o
PASS PASS PASS

B ®
PASS PASS PASS
PASS PASS PASS

Stanford (5248, Winter 2020

Step 8: update color buffer (if depth test passed)

Step 9:

m Repeat steps 1-8 for all triangles in the scene!

Stanford (5248, Winter 2020

Administrative

Due Dates

* Due Yesterday
— HW 3 (Color+Texture)

* Due tomorrow
— Quiz 3
* Due next Monday
— Lab Assignment 3 (Blocky World)

Quiz 2 statistics

Quiz 2 - Transformations & Modeling

100% 37%

High Score Low Score

83%

Mean Score

1.399

Standard Deviation

Mean Elapsed Time

53:54

0

Cronbach's Alpha

034 10% 20%

30%

40%

30%

I.|| | “
60% 70% g

0%

90%

100%

Q&A

End

	Visibility - CSE160 – Nov 10
	Slide Number 2
	Visibility
	Slide Number 4
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Participation Survey
	Slide Number 49
	Slide Number 51
	Painter’s algorithm
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 76
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 102
	Due Dates
	Quiz 2 statistics
	Slide Number 105
	Slide Number 106

