The Camera - CSEI160

* History of Projection

* View Transform

* Projection Transform

* Clipping and Screen Transform
* Graphics vs Real Cameras

e Administrative
e Q&A

History of projection

Perspective projection

Stanford (5248, Winter 2020

——————

Early pamtmg mcorrect perspective

(arolmglan pamtmg fro the 8 9th century Stanford (5248, Winter 2020

Perspective in art

Giotto 1290

-~

Stanford éizus.yyhter 2020

History of projection

* Later Renaissance: perspective formalized precisely

daVinci c. 1498

Later... rejection of proper perspective projection

Stanford (5248, Winter 2020

Correct perspective in computer graphics

Stanford (5248, Winter 2020

Rejection of perspective in computer graphics

Stanford (5248, Winter 2020

Computer graphics works like this

Basis Of Perspective — Lines Of Sight Through A Picture Plane =~ [19]

- '

”// & ; 5 D 3 ,. . \.(", e X S ‘1___ - 'i‘\lf:" " i ,,i‘ e 4

" The concept of the picture plane may be better understood by looking through a window or other transparent plane.

~ from a fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subjeet, will .’
all intersect this plane. Therefore, if you were to reach out with a grease pencil and draw the image of the subject

“ on this plane you would be “tracing out” the infinite number of points of intersection of sight rays and plane. The

result would be that you would have “transferred” a real thre¢-dimensional object to a t\i'o-dimc-x}sionak plane. X
- ; g v Gt

[CS 417 Spring 2002]

View Transform

Transformations: from objects to the screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,10)
view projection

Jj transform transform Cﬂ?:,

€ I 4 o
— = |

LY ﬁ%\ # il

i
(-1,-1,-1)
original description vertex positions now expressed everything visible to the
of objects relative to camera; camera is sitting camerais mapped to unit
oxe at origin looking down -z direction cube for easy “dipping”
AL
\G X o¥ (can canonicalize projection matrix)
\\O\)‘((o) \
0™
[WINDOW COORDINATES]
B screen
primitives are now 2D h o transform
and can be drawn via
rasterization
(0,0)
objectsnow in
2D screen coordinates

Stanford (5248, Winter 2020

Jovan Popovic at MIT

Viewing transformation

<\
the view matrix rewrites all world coordinates in view coordinates (eye space)

[Cornell]

Viewing transformation

<\
the view matrix rewrites all world coordinates in view coordinates (eye space)

[Cornell]

gluLookAt()

View
Matrix

Pasition (00,00, 00)
Rotafion. (0.0, 0.0, 0.0)
o

OpenGL camera is always at origin and facing to -Z in eye space

(this is animated GIF)

http://www.songho.ca/opengl/gl camera.html

http://www.songho.ca/opengl/gl_camera.html

void gluLookAt(

GLdouble eyeX , GLdouble eyeY , GLdouble eyeZ ,
GLdouble centerX , GLdouble centerY , GLdouble centerZ ,
GLdouble upX , GLdouble upY , GLdouble upZ

);
A
(a&,ag;ag)

gIMatrixMode(GL_MODELVIEW); (Up,, UP,, UP,) o ««?%’ ;
glLoadlIdentity(); ey e || X
gluLookAt(™ ~ | 7

0.0,0.0,5., ‘

0.0,0.0,0.0, z

0.0,1.0,0.0); /,/;f" (eyex, eye,, eye,)

What does gluLookAt() do?

« gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx,
upy, upz) is equivalent to
glM uItMatrle(M), // post-multiply M with current model-view matrix
glTranslated(-eyex, -eyey, -eyez);

w, uy; w, 0

Where M= v, v, v. 0] ‘
n, n, n. 0| w &% ‘.
0 0 0 1] ™ W

<}

u, n, v are unit vectors.

LookAt(eye, at, up) — Changing EYE

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ;1.0 ,10.0);
gluLookAt(0.00 ,0.0.(3 ,2.00 , <-eye

0.00 ,0.00 ,000 , <«-center

0.00 ,1.00 ,0.00), <-up

LookAt(eye, at, up) — Changing AT

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ;1.0 ,10.0);

gluLookAt(0.00 ,0.00 ,200 , <-eye

0.00 , I.ﬂkg , 0.00 , <«- center

0.00 ,1.00 ,0.00), <-up

LookAt(eye, at, up) — Changing UP

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ;1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,200 , <-eye

0.00 ,0.00 ,000 , <«-center

A , .00 ,0.00); <-up

So) QAOVQ
mesfdﬁc :}ZSPIQS

“Look At” Examples

gluLookAt(0,0,14,
0,0,0,
0,1,0);

gluLookAt(1,2.5,11,
0,0,0,
0,1,0);

Il eye (x,y,2)
/Il at (x.,y,z)
I/ up (x,y,2)

/I eye (x,y,2)
/I at (x,y,2)
/I up (X,

y.Z)

Same as the glTranslatef(0,0.-14) as expected

Similar to original, but just a little off angle
due to slightly perturbed eye vector

Mark Kilgard — CS354 UT

CS 354 31

“Look At” Major Eye Changes

gluLookAt(-2.5,11,1, // eye (x,y,2)
0,0,0, Il at (x.,y,2)
0,1,0); Il up (x,y,2)

Eye is "above"” the scene

gluLookAt(-2.5,-11,1, // eye (x,y,2)
0,0,0, /Il at (x,y,z)
0,1,0); /l'up (x,y,2)

Eye is "below” the scene

CS 354

“Look At” Changes to AT and UP

gluLookAt(0,0,14, Il eye (x,y,2)
2,-3,0, /I at (x.y,z)
0,1,0); Il up (x.y,2)

Original eye position, but “at” position shifted

gluLookAt(0,0,14, // eye (x,y,2)
0,0,0, /Il at (x,y,2)
7 {89 191) /l'up (x,y,2)

Eye is ‘below” the scene

http://www.songho.ca/opengl/gl camera.html

r
4% OpenGL Orbit Camera

3rd Person View

Point of View

Angles (degree) Camera Position Camera Target

Camera Matrix (column-major)
Pitch ()] al s) dol | n 00 1000 0000 0000 -0.000
4 I 0.000 1000 0.000 -0.000
Yaw (Y) J 0 v J 0.0 Y H 0.0
0.000 0000 1000 -5.000
Rl @) 7j o[z H 50z H 0.0

0.000 0.000 0.000 1.000

A Camera Quaternion: (s, X, ¥, 2)
Reset Camera ‘ bo VishowGrid [V|ShowFOV Vertical FOV (degree): 502 1000 0000 0.000 0.000

World-space view

Screen-space view World-space view

Screen-space view

Command manipulation window Command manipulation window

GLfloat pos[4] = { 1.50 , 1. A ,0.00 } glTranslatef(0.00 , 0

gluLookAt(0.00 <- eye glRotatef(0.0 ,0.00 ,1.00 ,0.00)
0.00

, <~ center glScalef(1.00 , 1.00 , 1.00)
0.00 : , 0.), <-up glBegin(...);

glLightfv(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values. Click on the arguments and move the mouse to modify values.

https://user.xmission.com/~nate/tutors.html

https://user.xmission.com/~nate/tutors.html
http://www.songho.ca/opengl/gl_camera.html

4% OpenGL ModelView Matrix oo ==

View (Camera) View Matrix Model Matrix ModelView Matrix
X 5 n 1 0.00 0.00 0.00 . 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Position Y 0 Position . 1.00 0.00 0.00) . 1.00 0.00 0.00 0.00 1.00 0.00 0.00
7 D 10] 0.00 0.00 1.00 -10.00 . 0.00 1.00 0.00 0.00 0.00 1.00 -10.00

0.00 0.00 0.00 1.00 : 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Pitch (X)

Heading ()] Rotation OpenGL calls for View Matrix OpenGL calls for Model Matrix
eading el (Translate -> Pitch -> Heading -> Roll) (RotZ -> RotY -> RotX -> Translate)
Roll 2) n [glRotatef (0,0,0,1); glTranslate£(0,0,0);
glRotat -0,0,1,0); glRotatef(0,1,0,0);

e

(r—— —_— glRotatef (0,1 0): glRotatef(0,0,1,0);
l, Reset View (Camera) | Reset Model ’ glTranslatef glRotatef(0,0,0,1);

View (Camera) View Matrix Model Matrix ModelView Matrix
X . 1.00 0.00 0.00 0.00 . 0.00 0.00 - 1.00 0.00 0.00 0.00

Position Y Position 0.00 1.00 0.00 0.00 ' . 1.00 0.00 0. 0.00 100 O. 0.00

7 0.00 0.00 1.00 0.00 . 0.00 1.00 0.00 0.00 0.00 1. 0.00

0.00 0.00 0.00 1.00 .00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Pitch (X)

Heading (Y) OpenGL calls for View Matrix OpenGL calls for Model Matrix
=L (Translate -> Pitch -> Heading -> Roll) (RotZ -> RotY -> RotX -> Translate)
Roll (2) glRotatef(0,0,0,1); glTranslatef(0,0,0);
glRotatef (-0 1,0); glRotatef(0,1,0,0);

. glRotatef (0, glRotatef(0,0,1,0); .
Reset View (Camera) | Reset Model glTranslatef (-0,-0,-0); glRotatef(0,0,0,1); ’0'

Participation May 5

Form description

; for UC Santa Cruz users. Change settings

I was in class May 5
Yes

No

0-1 hours
1-2 hours
2-4 hours

4+ hours

There are videos from Lucas introducing Labs @® Multiple choice

| didn't watch it, | just started the assignment
| watched it, but its NOT helpful

| watched it, and it IS helpful

Other.

Add option

[D 0| Required

There are videos from James introducing

| didn't watch them, | just started the assignment

Projection Transform

Transformations: from objects to the screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,10)
view projection

Jj transform transform Cﬂ?:,

l/) I/ ﬂ ﬂ
—l—y W\
C %’%\ # 30
Il
J
(-1,-1,-1)
original description vertex positions now expressed everything visible to the
of objects relative to camera; camera is sitting camera is mapped to unit

at origin looking down -z direction cube for easy “clipping”
(can canonicalize projection matrix)

[WINDOW COORDINATES]
B screen
primitives are now 2D h — e
and can be drawn via
rasterization
(0,0)
objectsnow in
2D screen coordinates

Stanford (5248, Winter 2020

Parallel projection

* Viewing rays are parallel rather than diverging

— like a perspective camera that’s far away

Pecsgecive pnmi(c (

o e i (\V“‘M;R \APW(P)

P

L] Projections

= o)

perspective projection

© www.scratchapixel.com

orthographic projection

Parallel projection: orthographic

to implement orthographic, just toss out z:

Cormell 5465 Fall 2004 * Lecture 10

Prﬂ]'ﬂf-tlﬂ'ﬂ
plane
1 L ;.~.:I
"h
] 1 0 o o] |°
yl=10 1 0 of Y
1 o0 0 1]

© 2004 Steve Marschner = 15

i] +—Z
o'f’ransfonng ',"o‘ _J'DTC‘IIVQI_/ ‘-l e L

Basic perspective projection

e T
A Inputpointin3D-H: x =[x, X, x. 1]

Pinhole
Camera
(0,0)

—_ = O O
o D O O

o O O -
oo = O

Assumption:

Pinhole camera at (0,0) looking down z
Stanford (5248, Winter 2020

Perspective vs. orthographic projection

m Most basic version of perspective matrix:

objects shrink
% in distance
N,

I 1
OO -

QO MmO

_—- 0 O

& Qe
L]

S N R

N N R

m Most basic version of orthographic matrix:

same size
—

I 1
OO =

COm=O

O =IO O

_0 O O
L]

I 1
_ N R
L]

I 1
N R
L]

- 1 -

-1 —

objects stay the

Stanford (5248, Winter 2020

View frustum

View frustum is the region of space the camera can see:

Pinhole
Camera
(0,0)

-zfar

- Top/bottom/left/right planes correspond to sides of screen
- Near/far planes correspond to closest/furthest thing we want to draw

Stanford (5248, Winter 2020

Mapping frustum to normalized cube

Before moving to 2D, map corners of view frustum to corners of cube: X1

('1 1'1 1'1) XI‘ X5

-Znear

X2 X6

-zfar

View frustum corresponding to pinhole camera
(perspective projection transform transforms this volume to normalized cube)

Why do we map frustum to unit cube?
1. Makes clipping much easier! (see next slide)
- Can quickly discard geometry outside range [-1,1]
2. Represent all vertices in normalized cube in fixed point math

* Question: what does the frustum of an orthographic camera look like? Stanford €5248, Winter 2020

Matrix for perspective transform
Takes into account geometry of view frustum:

0 = 0 0 left (I), right (r), top (t), bottom (b), near (n), far (f)

0 0 = <f /- fl‘”) = 2[n (matrix at left is perspective projection for frustum
| that is symmetric about x,y axes: |=-r, t=-b)

\0 0 -1 .

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

Stanford (5248, Winter 2020

v
ZV
/// 4

o ¥\

&
K

=

~

2 f o - S [Marschner]
41\ /]
\ i
N
Pcr__-,g?ec*ive ith’r PvCTeJ as o d};fooj’ion oF 3"579«“1:
»—'7:2——'—> ~Z
[Levoy]

o -
x’/

—Z!

° /Vo‘fe Complession of jm'c/ lines in X',y gﬂj_ z’,

gluPerspective

gluPerspective(double fovy, double aspect, double zNear, double zFar)

aspect =%

near

A
Y

far

Perspective(fovy, aspect, zNear, zFar) — Changing FOVY

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60k0 ,1.00 ,1.0 ,10.0)
gluLookAt(0.00 ,0.00 ,200 , <-eye

0.00 ,0.00 ,000 , <«-center

0.00 ,1.00 ,0.00), <-up

Perspective(fovy, aspect, zNear, zFar) — Changing ASPECT

Warld-space view Screen-space view

Command manipulation window
fovy aspect zNear zFar

gluPerspective(60.0 , A , 1.0 ,10.0)

gluLookAt(0.00 ,0.00 ,200 , <-eye

0.00 ,0.00 ,000 , <«-center

0.00 ,1.00 ,0.00), <-up

Perspective(fovy, aspect, zNear, zFar) — Changing NEAR

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 , 1.00 , A , 10.0)
gluLookAt(0.00 ,0.00 ,2.00 , <-eye

0.00 ,0.00 ,000 , <«-center

0.00 ,1.00 ,000); <-up

Perspective(fovy, aspect, zNear, zFar) — Changing FAR

Warld-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 Ok{);
gluLookAt(0.00 ,0.00 ,200 , <-eye

0.00 ,0.00 ,000 , <«-center

0.00 ,1.00 ,0.00), <-up

Near Plane
Clipping
Example

& Meshlab_64bit v1.3.3 - [Project
& | File | Edit Filters Render View

DFS

FOV: 69.6001 Mesh: PLY_bun_bin.ply
FPS: 885 Vertices: 35947
Faces: 69451

& File Edit Render

DFS

Near Plane
Clipping
Example

FOV: 69.6001 Mesh: PLY_bun_bin.ply
FPS: 654 Vertices: 35947
Faces: 69451

& Meshlab_64bit v1.3.3 - [Project
® File Edit Filters Render View

DFS

Near Plane
Clipping
Example

FOV: 69.6001 Mesh: PLY_bun_bin.ply
FPS: 75.8 Vertices: 35947

Qb jective: Talk to the Yillagers

Z-fighting

e

(34120

Near plane clipping
of villagers head

rurse; =6
Ok jective
T-E.|_|:§Z r’flq_:che Villagers=s

W hypixelnet

18681808 188188% Mansa

[VIF] Witle=s=! enchanted cobblestone CE642 an my ah 2 minutes left, cheap
[[‘1'-.-'FI' 1 ItHistas: Selling Stack OF FURFLE CAHDYT OH ma Ak SBEA COins 15 MIM

(=1
TheFhB3nix cheap Lapis blocks in mg ah endina soon

= D0 Gl L 0 1 -

Qb ective: Talk to the Yillagers <3120

SKTBLOCK

B2 89,28

[0 00

10
k]
=
-

> 10
n
—
=
I

5@ am 16
o Willage 9
Furse; =6 ?
+ Db, jective E
T.E!_I%: _’flq_ :che Villagers 4

L:”

W hypixelnet

EL 188/188% Mana

Saved scresnshot as 2E20-82-89 1737249009

g lxzyg was killed ba Sven Facknasier,

Qb jective: Talk to the Yillagers

L2

1861860 188/188% Mana

g lxzg was killed by 3uven Fackmaster,
Saved scresnshot as 2020-82-89 173730009
[VIF] Toonsoockatt: selling maxed out aotd wih crit & parta ne it interested

B2 89,28

SKTBLOCK

Ok jective
T.ELI:;: _’flq_ :che Villagers=s

W hiypixelnet

Fi

-y D:*
== D]

| -—
]

. 0011

11T =

oDd Ly

== [0 00 I

I

Qb ective: Talk to the Yillagers <3122

AKTBLOCK

B2/ 09528 iz
Spring Sth T
211B8am i@
o Willage Eﬂ

Furze: 26

11T =]

+ Ok jective
T.ELI:;: _’flq_ :che Villagers=s

ood Ly n

== [0 00 I

W hypixelnet

I

188180 188/188% Mana

[VIF] Toonsoockaft: selling maxed out aotd hll'tl;'l. crit & party me if interested
Saved scresnshot as 2020-82-89 173738009
CHVWF] azuru_el_mejor Sellng dernonic Sword on rdg akil W T

Qb ective: Talk to the Yillagers <3120

SRTBELOCK

Hz2 H9,52A8 iz

Spring Sth 11

S 1Ham 1A

=] Iu_nli”_age EW

Furze: 26 ?

+ Db jective 5
TauiﬁDtHENAUagers |

Ca3s120 3

W hypixelnet i

188180 188/188% Mana

[VIF] Toonzoockaft: selling maxed out aotd with crit & party ne if interested
Saved screenshot as ZEE2E-B2-A2_17.37.38.p09

[HVF] azuru_sl_mejord =ellng denonic Sword on mg akblil
Saved screenshot as 2B2E-EB2-A2_17.37.98.p09 .

More detailed aside: why near/far plane clipping?

® Primitives (e.g., triangles) may have vertices both in front and behind camera!
(Causes headaches for rasterization, e.g., checking if fragments are behind camera

® Avoid divide by zero in perspective divide (near plane clipping)
m Also important for dealing with finite precision of depth buffer

near =103
far=105

“I-fighting”

09 2
floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection
Stanford (5248, Winter 2020

A

Perspective Frustum

2n r+1
(/.= f/n.f) e 0 ~ 0
(1, "
/‘ 0 —“”1 i +Z 0
(r*f/n,t*ifn,b) [—D g
g - . + 2
(1*f/n.b*f/n,h) 0 0 —f R = _ﬁz
- F=n
= () () —1 O o
(r*f/n,b*/n,f)
: f+n
PR | R]
];I_I;El f—n
g
glFeustum(float 1, =z, b; ¢, n; £); Hm - "ﬁ" =-2n
f-ree —n

52438 Foll 98 Lecture 14 Copyright © Pat Hanrahan

Do we ever want the frustum to be non symmetric for left/right?

Projection Type Projection Parameters Projection Matrix

(®) Perspective Left : : 0.00 0.00

() Orthographic :
Right : . 2.00 0.00

Bottom
Rendering Mode ! 0.00 -1.22
@ Fil Top
0.00 -1.00

() Wireframe Near

() Points Far
Reset Parameters

{the red jine shows exactly where the camera Is aime:

13

FUJI RVP

(the red line shows exactly where the camera Is aimed)

FUJI RVP 12 FUJI R 13 FUJI RVP
llllllllllllllllllll

36mm 12mm
24mm

13

FUJI RYP

[B B B BN BN B B B O B B BN B BN BN B BN B I |
L 11A 12 120, 13 L 134

FUJIRYP 13
I nnnnnnnnnin

13

FUJI RVP
fEEREnEnnmn

AR R ERERENRORDN
13 w124

Image 3: Correct Perspective with Shift Lens

- oF V.

left
A ~

eye
separation

|

\J

right

left

eye
separation

i

right

Projection
planes

(screen) —~ _—

—

Projection
plane

(screen) —~ _—

Oblique Perspective Projection

Clipping and Screen
Transform

Transformations: from objects to the screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,10)
view projection

Jj transform transform Cﬂ?:,

l/) I/ ﬂ ﬂ
—l—y W\
C %’%\ # 30
Il
J
(-1,-1,-1)
original description vertex positions now expressed everything visible to the
of objects relative to camera; camera is sitting camera is mapped to unit

at origin looking down -z direction cube for easy “clipping”
(can canonicalize projection matrix)

[WINDOW COORDINATES]
B screen
primitives are now 2D h — e
and can be drawn via
rasterization
(0,0)
objectsnow in
2D screen coordinates

Stanford (5248, Winter 2020

Clipping

. “Clipping” is the process of eliminating triangles that aren’t visible from the camera
(because they outside the view frustum)

- Don't waste time computing appearance of primitives the camera can't see!
- Sample-in-triangle tests are expensive (“fine granularity” visibility)

- Makes more sense to toss out entire primitives (“coarse granularity”)

= Must deal with primitives that are partially clipped...

from: https://paroj.github.io/gltut/ Stanford (5248, Winter 2020

Clipping in normalized device coordinates (NDC)

® Discard triangles that lie complete outside the normalized cube (culling)
- They are off screen, don’t bother processing them further

m (lip triangles that extend beyond the cube... to the sides of the cube
- Note: clipping may create more triangles

X4

X1
('1 1'1 1'1) . X-'-)

X2 X6 [
X9 X6

Triangles before clipping Triangles after clipping

* These figures are correct: OpenGL normalized device coordinates is left-handed coordinate space Stanford (5248, Winter 2020

Review: screen transform

After divide, coordinates in [-1,1] have to be “stretched” to fit the screen
Example:

All points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space: Screen (W x H output image) coordinate space:
4 w
1 (1,1) (0,0) -

°h .
< 00) >

1 H
3 (WH)

Step 1: reflect about x-axis ¥

Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

Stanford (5248, Winter 2020

WebGL

Listing 7.8 PerspectiveView.js

1 // PerspectiveView.js
2 // Vertex shader program

3 var VSHADER SOURCE = &"d.

4 'attribute vec4 a_Position;\n' + h&$

5 'attribute vecd4 a_Color;\n' + \ko

(3 'uniform mat4 u_ViewMatrix;\n' + \)-/

7 'uniform mat4 u_ProjMatrix;\n' +

8 'varying vec4 v Colo

9 \n' +

10 gl _Position = u_ProjMatrix * u_ViewMatrix * a_Position;\n' +
11 v olor;\n' +

12 'N\n';

24 function main() {

- .y (\05%
41 // Set the vertex coordinates and color (blue triangle is in front) M
42 var n = initVertexBuffers(gl); Yo!'t'

51 // Get the storage locations of u ViewMatrix and u_ProjMatrix
52 varu_ViewMatrix = gl.getUniformLocation(gl.program, 'u_View
53 var u_ProjMatrix = gl.getUniformLocation(gl.progr. ojMatrix");

59 var viewMatrix
60 var projMatrix

new Matrix4(); e view matrix
new Matrix4(); // The projection matrix

€1
62 // Calculate the view and projection matrix
63 viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0); ——— $¢£L°°W(€\1€a of, uP)

64 projMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100); <G ——— $€a7€l’$P€CﬁVe('F°V1 aspect, nean, 'far)
€5 // Pass The view matrix and projection matrix to u ViewMatrix and u_ProjMatrix

(13 gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements);
67 gl.uniformMatrix4fv(u ProjMatrix, false, projMatrix.elements);
72 // Draw the rectangles

73 gl.drawArrays(gl.TRIANGLES, 0, n);

74 }

75

Graphics vs Real Cameras

CSAIL
24mm

-
-

50mm

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

@? o Perspective vs. viewpoint

- Focal lens does NOT ONLY change subject size
- Same size by moving the viewpoint
- Different perspective (e.g. background)

Frédo Durand — MIT Computer Scienco DAPERgERersnective-Speed, aperture:Filter-Lighting-Processing & Print-Make up-Retouching

@? o Perspective vs. viewpoint

- Portrait: distortion with wide angle
* Why?

Wide angle Standard Telephoto

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

AlAel

CsalL Exposure

- Two main parameters:

— Aperture (in f stop) i 5 %

Full aperture Medium aperture Stopped down

— Shutter speed (in fraction of a second)

. = B>
&) (&) BIEIEE
e J &

Blade (closing) Blade (open) Focal plane (closed) Focal plane (open)

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

écgsi. L Pinhole limit

(B)
(A)

218 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images
of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole
is relatively large, the image rays are not properly converged, and the image is blurred.
(B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the
pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Frédo Durand — MIT Computer Science and Atrtificial Intelligence Laboratory - fredo@mit.edu

Administrative

Q&A

End

