
Ray Tracing- CSE160

• What ray tracing looks like

• Basic algorithm

• Rays

• CSG
• Design a raytracer

• Distributed ray tracing

• Photon Mapping

• Convolution Theorem

• Administrative
• Q&A

What ray tracing looks like

Today: Ray Tracing
Image by
Turner
Whitted

Basic Algorithm

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 15

Ray tracing idea

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 16

Ray tracing algorithm

for each pixel {
compute viewing ray
intersect ray with scene
compute illumination at visible point
put result into image
}

Rays

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 19

Analogy to drawing
[C

S
41

7
Sp

ri
ng

 2
00

2]

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 20

Generating eye rays

• Use window analogy directly

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 21

Vector math review

• Vectors and points
• Vector operations

– addition
– scalar product

• More products
– dot product

– cross product

Dot product

Cross product

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 23

Ray: a half line

• Standard representation: point p and direction d

– this is a parametric equation for the line
– lets us directly generate the points on the line

– if we restrict to t > 0 then we have a ray
– note replacing d with ad doesn’t change ray (a > 0)

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 24

Generating eye rays

• Just need to compute the view plane point q:

– we won’t worry about the details for now

Constructive solid geometry

Design a raytracer

Class designs a ray tracing algorithm

(Small group: write pseudo-code)
(Less than 10 lines code)

Ray Casting (a.k.a. Ray Shooting)
for every pixel

construct a ray
for every object

intersect ray with object

Complexity?
O(n * m)
n = number of objects, m = number of pixels

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 33

Objects (no lighting)

Add lighting to your code

Ray Casting with Phong Shading
When you’ve found the closest intersection:

color = ambient*hit->getMaterial()->getDiffuseColor()
for every light

color += hit->getMaterial()->Shade
(ray, hit, directionToLight, lightColor)

return color

Complexity?
O(n * m * num_lights)

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 36

Add lighting

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 37

Add shadows

Add shadows to your code

Q: How to calculate shadow
• A) Send a ray to the eye
• B) Send a ray through the surface to other side
• C) Send a ray to the light
• D) Send a ray in the reflection direction
• E) Send lots of rays in all directions

eye

eye

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 41

Multiple lights

Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 42

Add reflection to your code

Q: How to calculate reflection
• A) Send a ray to the eye
• B) Send a ray through the surface to other side
• C) Send a ray to the light
• D) Send a ray in the reflection direction
• E) Send lots of rays in all directions

Ray

Reflected Ray

Mirror Reflection
• Cast ray symmetric with

respect to the normal
• Multiply by reflection

coefficient (color)
• Don’t forget to add epsilon

to the ray

Without epsilon

With epsilon

Amount of Reflection
• Traditional ray tracing (hack)

– Constant reflectionColor

• More realistic:
– Fresnel reflection term (more reflection at grazing angle)
– Schlick’s approximation: R(q)=R0+(1-R0)(1-cos q)5

R

qV qR
V

N

metal Dielectric (glass)

Add refraction to your code

Q: How to calculate refraction
• A) Send a ray to the eye
• B) Send a ray through the surface to other side
• C) Send a ray to the light
• D) Send a ray in the reflection direction
• E) Send lots of rays in all directions

Transparency
• Cast ray in refracted direction
• Multiply by transparency coefficient (color)

Distributed raytracing

Soft shadows?

eye

20% in shadow

Glossy reflections?

Q: How to calculate glossy surface
• A) Send a ray to the eye
• B) Send a ray through the surface to other side
• C) Send a ray to the light
• D) Send a ray in the reflection direction
• E) Send lots of rays in all directions

Subsurface scattering

Photon Mapping

How do we get this effect? (caustics)

Do both directions. Deposit light in the scene from the light.

Real time raytracing
(I have no idea how this works)

Administrative

Q&A

End

