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Introduction

When someone thinks of a texture, they probably think of an image used to 'paint' a model in order to give it a certain
appearance. This refers to bitmapped textures, because the texture is made of pixels from an actual bitmap image. These can
be very realistic, especially if taken from photographs of actual surfaces. However, one major restriction applies to bitmapped
textures: a bitmapped texture has a fixed amount of detail. It cannot be scaled larger without looking softer, it will never yield any
more detail than what is already captured in the pixels.

Procedural textures take an entirely different approach. Instead of creating an image by defining a large, unchanging block of
pixels, procedurals create the texture from the ground up. This is where the term 'procedural' comes from. The texture is defined
only by the procedure needed to create it. You only need to give the computer a (relatively) small formula, instead of a huge
block of pixels. With this formula, the computer is able to create the texture at any scale, in any orientation, extending as far as
you need.

Using these techniques, 3D software is armed and ready to synthesize an infinite number of textures at your command. Simply
tweaking a few parameters can vary the texture widely. You can think of these textures as space full of unique shapes and
features, extending in all directions, waiting to be explored. The features in this space are all defined by the interactions between
a set of formulas. These formulas take in a particular coordinate, and they will report back what sort of feature is at that
coordinate. In our case, these features are colors, and we put those colors on a 3D model.

A procedural function will take a coordinate, and give a color back. A particular function may also have any number of
dimensions to it. That is, a 2D procedural, being most like a bitmap image, takes two coordinates, one for X and one for Y, and
returns a color. This can be thought of like looking up the color of a pixel in an image. What's the difference? First, n the case of
an image, the pixel must be stored explicitly in memory in order to be sampled. As a procedural, the color value doesn't "really"
exist until it is sampled, since it is pulled from a formula. Second, again in the case of the image, the space between pixels is
undefined. There are only so many pixels in an image, and if you want to see more than that, too bad. In contrast, a procedural
texture will let you take a sample anywhere. This is what gives it one of its most remarkable qualities.

It is easier to show some of the results of using procedural textures rather than simply talking about their benefits, so here are
four examples of using procedural textures in an actual scene.
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Example 1
 

 

 

This mushroom is entirely textured with procedural
functions. It uses a 3D noise function to drive its surface
bumpiness. Its color variations are created by a volumetric
"billow" function, remapped by a color gradient of various
browns and tans. The specular highlight strength is varied
by a smooth, low-frequency noise function, in order to give
the surface a more natural inconsistent shine. Finally, the
contrast of the color function is modified by the slope of the
surface, so there is a blotchy pattern along the rim where
the slope is extremely vertical.

This texture, which took very little time to design, is very robust and requires no UV mapping at all. It takes relatively little
processing power to compute and needs no external image files.

 

Example 2
 

 

The bumpiness on the neurons is created by two voronoi textures blended
together at two slightly different sizes, used as a bump map. This is able to
give the neuron surfaces a wrinkly, pitted look commonly attributed to
photographs in microscopic scale. The same texture is also used to modify
the specularity of the texture, so as to limit how shiny the pits will be. This
increases their apparent depth. There is a larger 3D noise texture at about
five times the scale of the voronoi texture to give a broad, large-scale color
variation. If this had been left out, the neurons would have appeared very
bland and noisy from a distance (or, to quote Ken Perlin slightly out of
context, like salt without food).



It would have been extremely difficult to texture a scene like this with image maps, due to the complex and convoluted surface
shapes involved. Where I was able to simply define a few 3D volumetric textures, map their values to colors, and apply them to
the entire scene with procedurals, using image textures would have requried me to UV map the neurons and tile textures over
their surfaces. Not only would this have been much more tedious, it would have also looked a lot worse without extra work.

 

Example 3
 

 

Here, procedural textures also allow me to automatically give a surface-feature-based
appearance to an object, much like the blotches added to the mushroom when the
vertical slope was high.

In this example, the look of wet snow and ice were added to the top of the '"rock" by
using the facing direction of the surface. Where the surface faced up towards the sky
(Y+), a second procedural texture resembling snow and ice was added to the base
procedural texture. The base procedural texture was also slightly darkened to resemble
a diffuse shadow cast by the snow where there were breaks in the snow texture. Finally,
the dry, powdery snow teture on the ground was created by a noise function scaled up
along Z (east-west) to make it appear wind-blown in one direction.

All of these functions are automatic and require very little extra attention of the artist in
order to make them work on any surface. In extremely large scenes consisting of many

of the same objects (for example, a scene showing miles of rocks in snow), procedural texturing methods are almost essential.

Procedurals need not only apply to shader attributes, but they may be used to sculpt the actual geometry of a surface, as seen in
the last example.

 

Example 4
 

 

This image of a strange, surreal landscape was
created with the output of only one procedural
function. The function is commonly referred to as a
Worley procedural, named after Stephen Worley,
who has done a lot of work on creating cellular
texture functions. The Worley procedural is very
closely related to Voronoi textures, and is in fact a
clever variation of one.

This landscape was originally just a flat plane, but
has been displaced by a large-scale Worley
texture. The color comes from the same texture,
where it has been remapped to a green-to-gray
gradient. There are no other textures involved.

 

Functions



Function Basics

This page may not be of interest to you, and you may safely jump to the next page, "Frequency and Scale"

All procedural textures are functions. You need to tell the texture where on the surface you are coloring in order for them to give
back the proper color or value. In other words, you give the function a set of coordinates, and it gives you back a value. Just how
many dimensions and how many values depends on the function. A full-color procedural texture will give three values, one each
for R, G, and B.

Let's start with a very simple procedural texture. This texture is one-dimensional, and essentially makes a straight (linear)
gradient from one side to the other. This texture is defined like this:

f(x) = x

When we give it a coordinate x, it just returns x right back to us.

This means where the x coordinate in the image is higher,
the texture is lighter. The y coordinate is not used, since
this is a 1D texture, so it has no effect. This texture
function looks exactly the same on the top as it does on
the bottom.

On the left-hand box, the horizontal direction is the value
of x, with the right side being highest (1) and the left side
being lowest (0). The gray lines represent halfway marks
(0.5). The vertical direction represents f(x), which is the
value the function gives back when we give it x. The top is
obviously highest, and the bottom is lowest. The right-
hand box shows this same function plot as pixel values.
Higher values give brighter pixels, where 1.0 is white, and

lower values give darker pixels, where 0.0 is black.

This one is a tad more interesting. It uses a sine wave
driven by x, but x is multiplied by ten in order to bump the
frequency up. Notice it doesn't look exactly like a sine
wave, but more like two humps. This is because the rest
of the sine wave is hidden below zero, since sine waves
go from -1 to +1. Let's try and fix this. First we want to get
the sine wave to be above zero. So, since it dips below
zero by -1, let's add 1 to it. This will make the sine wave
now swing from 0 to 2 instead of -1 to 1. Next, to get it
down in the range of 0 to 1, we divide it by 2.

And it worked just fine!

The sine wave is swinging from 0 to 1 so we can see the
whole wave. Sine waves are used to make all sorts of nice
looking patterns, sometimes alone, and sometimes used
as the 'base' for more complex patterns, such as marble
veins and wood grain. They are often used with excellent
results in many types of plasma or gaseous patterns, and
are also well suited for making glows and burst patterns.

Although I brought the sine wave's range into 0 to 1 from
-1 to 1, I only did that for visual purposes. Sometimes it
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really is useful to have a sine wave working in this range, but often times it is more useful to keep the sine wave in its natural
range.

These functions work nicely, and are easy understand, but they are too predictable. Things in nature are irregular. They don't
often repeat, at least not in a straight-forward way. The greatest tool we can use in graphics to produce this irregularity is
noise.

Noise is controlled randomness. There are several types of noise which can add a dash of irregularity to our textures,
however, I'm going to focus on a specific (and very popular) type of noise called Perlin Noise, developed by Ken Perlin in the
early 1980s.

I'm not going to explain how perlin noise works right now,
that is best left to another document, or you could just
read the slideshow-style presentation created by the
person who invented it.

Noise gives us a sort of natural unpredictability to work
with. We can use this unpredictability to drive the
attributes of more regular functions in order to achieve
interesting results.

In order to move on, it is necessary to introduce two-
dimensional functions. These simply take two parameters,
x and y, instead of just x, but still give back one number.
In order to further explain this, I'm going to go back to a
simple example very similar to the first one I showed you in one dimension:

f(x, y) = x * y

In this example, you can see the brightest point is where both x and y are equal to
1. This is because the formula is x * y, and 1 * 1 = 1. Remember 1 is white and 0
is black. At the upper left and lower right corners, one parameter is 1 but the other
is 0, and anything times 0 is 0. So we have a texture that gradually gets brighter as
x and y approach 1 together.

We could take this idea a little further and try using a sine wave on one parameter,
but keep the other parameter the way it is. For example, let's try replacing x with
sin(x * 10), to get the function f(x, y) = sin(x * 10) * y.

It looks almost exactly like the one-dimensional f(x) = sin(x * 10) example I
showed earlier, however it fades out as y drops, thanks to the "* y" addition. This
makes the texture officially two-dimensional.

How do we begin to break up these bland, smooth functions with noise? Well, we
can start by pushing around the inputs to some of these functions with our noise
function. For example, instead of making sin() produce a number directly from the
x coordinate, we could push the x coordinate around with a small amount of noise.
This is essentially the main approach to building procedural textures: use one
function to modify another function until you get the desired result!

As I will be demonstrating, many common procedural textures are made this way.
Most marble vein textures are made by pushing the x in sin(x) around with a 2D
noise function. In this case, the sin(x) function is also usually squeezed into the

range of 0 to 1. The entire function looks like this:

f(x, y) = (1 + sin( (x + noise(x * 5 , y * 5 ) / 2 ) * 50) ) / 2

http://mrl.nyu.edu/~perlin/
http://www.noisemachine.com/talk1/


This might seem complex at first, but it's easy to understand. Let's look at it in a broken down way.

We multiply x and y in noise(x * 5, y * 5) by 5 in order to make the noise features smaller (by making the coordinates take a
stride 5 times larger). We are dividing noise(x * 5 , y * 5 ) by 2 in order to lessen it's effect on x. The less we divide noise(x * 5
, y * 5), the more rough and wild the marble veins will become. We then multiply the result of that part by 50 to increase the
frequency of the sine waves. The rest of the function, where we add 1 at the beginning, and divide by 2 at the end, puts our
sin() function into the range of 0 to 1.

What does this look like?

(Left) The sin() function
alone, with no noise to
modify the x parameter.

 

(Right) The noise()
function alone.

 

Finaly something more interesting! The normally boring 1D sin() function is now being wobbled about its x parameter by a 2D
noise() function.

We could potentially remap these grayscale values to colors, or add them to an already existing noise texture, to get even
better looking results.



 (variations made by remapping the grayscale values to a color gradient)

 

Big Picture
Frequency and Scale

Procedural textures are all about the details. Detail doesn't just mean the small things, it refers to any part of "the big picture"
which can be looked at separately from the rest. A good procedural texture will be made up of details at many different scales; it
will have large sweeping details, medium sized details, tiny details, even tinier details, and many in between.

Look at these scales as
frequencies, like the
frequencies in an audio wave.
The highest frequencies carry
all the information about how
the wave moves on the
smallest scales, while the
lowest frequencies represent
the widest, slowest variations.
Thinking about this, you can
see that scale is the inverse of
frequency.

Apply this concept to the
earth. The largest scales
represent the oceans and
continents. These objects
have the most obvious shape
on a very large scale. As you
get closer, however, their
large-scale shape becomes
unnoticable, and you see the smaller scales fade into sight, forming mountain ranges, coastlines, forests, and deserts. You move
in closer, and begin to notice even finer details, including groups of individual trees, large buildings, and rivers. All of these
shapes and features can be considered on independent scales, but are all part of the same earth.

The idea that "the big picture" is formed by several levels of combined detail was probably in the minds of many artists and
philosophers over the millennia, however it was first put into practical use in the early 1800s by Joseph Fourier. Fourier
discovered the concepts of Fourier Analysis, which essentially states that any function can be approximated by the sum of sine
and cosine waves over a range of different frequencies and amplitudes (whew). This idea was found to apply to just about
everything, including audio and imagery.

Let's take the face of this cat, for example.

The area around its mouth is noticably darker than the rest of its face. The light intensity there drops smoothly over a width of
about 45 pixels, and then goes back up.

 

Look at this as the result of a function, with a 45 pixel scale, lowering the brightness at this spot.



What
happens if
we
separate
this image
into
various
scales
(see the
images to
the left),
putting it back together, except leaving out the scales responsible for 32-pixel
and 64-pixel wide details?

The mouth area is no longer darkened,
because there is no longer any variation at
the necessary scale. The bright spots on the
fur have also become dull, since their detail
fell within roughly the same scale. Obviously,
it is very important to make sure your texture
contains variation at all scales, or you will
lose the richness afforded by subtle variations
in color and brightness.

Some painters tend to work in a very similar
manner. To begin their work, they will paint out large vague blobs of color. Slowly
they will make repeated passes over the blobs, each time adding another level of
definition, gradually building up shape and detail, until they are down to filling in
the very finest details they are able to paint. When you're doing procedural
textures, since one detail level doesn't disrupt the other, it is generally okay to
work in either direction, that is, you may start small and go big, or start big and
go small.

Here are some simple, boring functions which, when repeatedly combined with
smaller and smaller versions of themselves, create very interesting patterns. The
table below shows you the basic source pattern (left), and combinations of that
pattern with smaller versions of itself using various combination methods.



Average (1/n) - This is simply the average of all of the scales being used, 'n' is the total number of scales. So if there are 6
scales, each scale contributes about 16% (1/6th) of the final value.

Difference - This uses the difference between the color values of each scale as the final texture color.

Weighted Sum (1/2^n) - The weighted sum is very similar to the average, except the larger scales have more weight. As 'n'
increases, the contribution of that scale is lessened. The smallest scales (highest value of n) have the least effect. This method
is the most common and typically the most visually pleasing.

4% Threshold - This is a version of the Weighted Sum where anything below 48% gray is turned black, and anything above
52% gray is turned white.

The process of combining several copies of the same thing at different scales is also sometimes called 'Fractal Synthesis'. This
is where fractals get their name, they are created by iterating over and over through the same function on different scales, which
gives them their interesting self-similarity.

Types Of Textures
Voronoi

A Voronoi diagram is a diagram that contains a set of points and a set of edges. The edges partition these points in such a way
that, if you were to pick a random location in the diagram, and look at which set of edges you're inside, the location you chose is
closest to the point inside those edges than any other point in the diagram. The edges in a voronoi diagram lie in the places
where a location is equidistant to two or more points.



Think of it as if you had a set of randomly colored, randomly located points. Suddenly, these
points start growing into circles, and expand until they meet. Where these circles meet, they
stop growing, but they keep expanding where they haven't touched anything, until all space is
filled up. As a result, you'll get a bunch of randomly colored fragments of geometric shapes.
These shapes define the voronoi regions for their points; in other words, every location inside
a given shape is closest to that shape's "birth point" than any other point.

In actuality, Voronoi regions are computed in an entirely different manner. They can be
computed in several ways, in fact. The easiest way is simply to pick a location, find out which
random point you're closest to, and then say "hey, alright, this location is inside this point's
Voronoi region!"

The patterns defined by Voronoi regions show up everywhere in nature. In biology, cells pack
together in a very similar manner. When you have a bunch of soap suds, the intersections where bubbles meet and merge
together form Voronoi regions. On a frosty pane of glass, frozen water vapor expands into Voronoi-like shapes.

When computing a Voronoi texture, you pick a pixel, and find the point closest to that pixel. The pixel's color is determined by the
distance to that point. You can make variations of the texture by instead using the second closest point, or third, etc. There is a
naming convention for variables used to represent the distance from a pixel to a point. Typically, "fn" is used, where n is the nth
closest point to the pixel being sampled. For example, f1 would be the distance from the pixel to the 1st closest point, f2 would
be the distance to the 2nd closest point, and so on.

Animated Examples (Java, Pop-Up)

Example 1

 

 

This example shows f1 (red) and f2 (blue) lines
stretching from a row of pixels to their 1st and 2nd
closest points. These lines represent the distance

Example 2

 

 

Nearly identical to Example 1, except the distance
lines accumulate and blend together as they are
drawn, so you are able to see them leading to every



from each closest
point to each pixel
in the row, which is
controlled by your
mouse cursor. The
color of the pixels in
that row, if they had
been drawn, would
be brighter as the
lines got longer.

region in the image
at once.

Common Terms

f1, f2, ...., fx Used to denote '1st closest', '2nd closest', ..., 'x closest' point distance.

Manhattan Distance

This method uses orthogonal (90 degree) lines instead of
straight lines to calculate the distance between samples and
points, named so because the method resembles city streets.

Distance Squared A distance modification used to effectively smooth out pointy, cone-like features in
the texture.

Noisy Finish
Noise

Noise is the holy grail of procedural textures. It is one of the first functions used to destroy the
plastic appearance of computer graphics with the power of unpredictability. The computation
of noise is also a deep subject; true noise should be completely random, but generating
random numbers on the computer, which is a machine of the most strict order, is a very
complex task.

Noise itself comes in many forms, but all have the same goal: irregularity. It is used in most
textures as a function for introducing irregular patterns and distributions. The most basic form
of noise is usually caled "Salt and Pepper" noise, which is characterized by simply choosing a
0 or a 1 randomly for every single sample.

The most important feature of noise in computer graphics is pseudo-randomness. This means
if we give the noise function a certain input number, it will always return the same random

result for that number. In this sense, it is not truly random, but that's a good thing. If we're sampling the random value for a
certain pixel, it won't change every time we sample it.



Multi-scale noise functions are typically the most useful. They're created by adding together several basis functions at different
scales and amplitudes.

 Basis Function for standard Perlin Noise

 Basis Function for Ridged Perlin Noise (1 - abs(noise))

Below is an example of how consecutive scales are added together to create a complex multi-scale noise function. The left
column shows each scale in succession, while the right column shows the noise function in various levels of complexity.



 

Common Terms

Frequency The base frequency of the texture. Higher frequencies result in smaller features.

Inflection

This refers to taking the absolute value of the noise function, resulting in sharp
discontinuities where the function meets 0. This gives the noise a bubbly look.
Subtracting the absolute value from 1 instead flips the values around, giving the
noise a ridged look.

Lacunarity

In multi-scale noise, lacunarity is the spacing between consecutive scales. Typical
noise uses a lacunarity of 2.0, which means the noise will be made up of scales at
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 ... 1/2^n. Reducing the lacunarity to 1.0 effectively
makes it a single-scale noise function, since 1/1^n is always going to be 1, no
matter what n is.

Persistence

In multi-scale noise, persistence refers to the amount of contribution smaller scales
make to the overall texture. A higher persistence will result in a noisier, more
complicated looking texture, where the fine details are strong and drastic. This is
also sometimes referred to as the fractal dimension.

Octave An octave refers to the level of scale of a function. For example, the first octave in a
function represents a scale of 1. The second octave represents a scale of one-half



(or, a frequency of 2). Each successive octave is half the scale of the previous. In
music, an octave refers to a musical interval of eight tones, which is a very closely
related concept.

 


